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Conformal invariants and conformally invariant metrics have been some of the key
notions of geometric function theory and of quasiconformal mapping theory for several
decades [AVV]. One of the modern trends is to extend this theory to Euclidean spaces of
higher dimension or to more general metric spaces.

We study here expansion/contraction properties of Möbius transformations of the unit
ball Bn in Rn onto itself with respect to the distance ratio metric.

For a subdomain G ⊂ Rn and for all x, y ∈ G the distance-ratio metric jG is defined as

jG(x, y) = log

(
1 +

|x− y|
min{d(x, ∂G), d(y, ∂G)}

)
,

where d(x, ∂G) denotes the Euclidean distance from the point x to the boundary ∂G of
the domain G . The distance ratio metric was introduced by F.W. Gehring and B.P. Palka
[GP].

The distance ratio metric jG is not invariant under Möbius transformation. There-
fore, it is natural to ask what the Lipschitz constants are for this metric under conformal
mappings or Möbius transformations in higher dimension. F. W. Gehring and B. G. Os-
good proved that these metrics are not changed by more than a factor 2 under Möbius
transformations, see [GO, proof of Theorem 4].

Theorem 0.1. If D and D′ are proper subdomains of Rn and if f is a Möbius transfor-
mation of D onto D′, then for all x, y ∈ D

1

2
jD(x, y) ≤ jD′(f(x), f(y)) ≤ 2jD(x, y)

.

This global estimation can be improved for some special domains.

For example, an answer to the conjecture proposed in [KVZ] is given in the following
assertion.

Theorem 0.2. Let a ∈ Bn and f : Bn → Bn = f(Bn) be a Möbius mapping with f(a) = 0.
Then for all x, y ∈ Bn

1

1 + |a|
jBn(x, y) ≤ jBn(f(x), f(y)) ≤ (1 + |a|)jBn(x, y),

and the constants 1
1+|a| and 1 + |a| are both best possible.

Remark 0.3. The sharpness of the constant is proved in [KVZ, Remark 3.4] by taking
x = ta/|a| = −y, t ∈ (0, 1) and letting t→ 0+.
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For a punctured disk we obtain

Theorem 0.4. Let a ∈ B2 and f : B2 \ {0} → B2 \ {a} be a Möbius transformation with
f(0) = a. Then for x, y ∈ B2 \ {0}

jB2\{a}(f(x), f(y)) ≤ C(a)jB2\{0}(x, y),

where the constant C(a) = 1 + (log 2+|a|
2−|a|)/ log 3 is best possible and C(a) < 1 + |a|.

References

[AVV] G.D. Anderson, M.K. Vamanamurthy, and M. Vuorinen: Conformal Invariants, In-
equalities and Quasiconformal Maps, John Wiley & Sons, New York, 1997.

[GO] F. W. Gehring and B. G. Osgood: Uniform domains and the quasihyperbolic metric, J.
Analyse Math. 36, 1979, 50-74.

[GP] F. W. Gehring and B.P. Palka: Quasiconformally homogeneous domains, J. Analyse Math.
30, 1976, 172-199.

[KVZ] R. Klén, M. Vuorinen, and X. Zhang: Quasihyperbolic metric and Möbius
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