Bernoulli numbers, Drinfeld associators, and the Kashiwara-Vergne problem

(based on joint works with B. Enriquez, E. Meinrenken, M. Podkopaeva, P. Severa, C. Torossian)

Anton Alekseev

Department of Mathematics
University of Geneva, Switzerland

July 2, 2012

Bernoulli numbers

Jacob Bernoulli

$$
1^{m}+2^{m}+\cdots+n^{m}=\frac{1}{m+1} \sum_{k=0}^{m}\binom{m+1}{k} B_{k} n^{m+1-k}
$$

$$
B_{0}=1, B_{1}=-\frac{1}{2}, \quad B_{2}=\frac{1}{6}, \quad B_{2 k+1}=0, \text { for } k \geq 1
$$

Generating function:

$$
\begin{gathered}
\frac{t}{e^{t}-1}=\sum_{k=0}^{\infty} B_{k} \frac{t^{k}}{k!} \\
\frac{t}{1-e^{-t}}=1+\frac{t}{2}+\sum_{k=2}^{\infty} B_{k} \frac{t^{k}}{k!}
\end{gathered}
$$

Campbell-Hausdorff series

$x, y, z=$ generators of a free Lie algebra

$$
\begin{gathered}
\operatorname{ch}(x, y)=\log \left(e^{x} e^{y}\right)=x+\frac{\operatorname{ad}_{x}}{1-e^{-\operatorname{ad}_{x}}} y+O\left(y^{2}\right) \\
\left(\frac{\operatorname{ad}_{x}}{1-e^{-\mathrm{ad}_{x}}} y=y+\frac{1}{2}[x, y]+\sum_{k=2}^{\infty} \frac{B_{k}}{k!} \operatorname{ad}_{x}^{k}(y)\right)
\end{gathered}
$$

Theorem

$\operatorname{ch}(x, y)$ is the unique Lie series such that

- $\operatorname{ch}(x, y)=x+y+\frac{1}{2}[x, y]+\ldots$
- $\operatorname{ch}(x, \operatorname{ch}(y, z))=\operatorname{ch}(\operatorname{ch}(x, y), z)$

Duflo isomorphism

$\mathbb{K}=$ field of characteristic 0 ,
$\mathfrak{g}=$ Lie algebra over $\mathbb{K}, \operatorname{dim} \mathfrak{g}<+\infty$
Theorem (Duflo, 1977)

$$
Z(U \mathfrak{g}) \cong(S \mathfrak{g})^{\mathfrak{g}}
$$

$Z(U \mathfrak{g})=$ the center of the universal enveloping algebra
$(S \mathfrak{g})^{\mathfrak{g}}=$ the ring of invariant polynomials

Notation

$$
\begin{aligned}
& V=\text { vector space } \\
& V^{*}=\text { its dual }
\end{aligned}
$$

Consider elements of $\overline{S V^{*}}$ as (possibly) infinite order constant coefficient differential operators

$$
p_{i} \mapsto \frac{\partial}{\partial x_{i}}
$$

Example: $n=1$

$$
\begin{aligned}
A & =a_{0}+a_{1} p+\cdots+a_{k} p^{k}+\ldots \\
& \mapsto \partial_{A}=a_{0}+a_{1} \frac{\mathrm{~d}}{\mathrm{~d} x}+\cdots+a_{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}}+\ldots
\end{aligned}
$$

Duflo isomorphism

The isomorphism $(S \mathfrak{g})^{\mathfrak{g}} \cong Z(U \mathfrak{g})$ is a restriction (to \mathfrak{g} invariants) of the vector space isomorphism

$$
\text { Duf }=S y m \circ \partial_{J^{1 / 2}}
$$

where $S y m: S \mathfrak{g} \rightarrow U \mathfrak{g}$ is the symmetrization map: $x y \mapsto \frac{1}{2}(x y+y x)$
and

$$
\begin{aligned}
J^{\frac{1}{2}}(x) & =\left(\operatorname{det}\left(\frac{e^{\operatorname{ad}_{x}}-1}{\operatorname{ad}_{x}}\right)\right)^{\frac{1}{2}}= \\
& =\exp \left(\frac{1}{2} \operatorname{Tr} \operatorname{ad}_{x}+\frac{1}{2} \sum_{k=2}^{\infty} \frac{B_{k}}{k \cdot k!} \operatorname{Tr}\left(\operatorname{ad}_{x}^{k}\right)\right) \in \overline{S_{\mathfrak{g}}}
\end{aligned}
$$

Example

- $\mathfrak{g}=\operatorname{su}(2)=\langle x, y, z\rangle$

$$
[x, y]=z, \quad[y, z]=x, \quad[z, x]=y
$$

- $\mathfrak{g}^{*}=\mathbb{R}^{3}, \quad(S \mathfrak{g})^{\mathfrak{g}}=\mathbb{R}\left[x^{2}+y^{2}+z^{2}\right]$
- the Casimir element $x^{2}+y^{2}+z^{2} \in Z(U \mathfrak{g})$

$$
\begin{aligned}
& \text { Duf : } x^{2}+y^{2}+z^{2} \mapsto x^{2}+y^{2}+z^{2}+\frac{1}{4} \\
& \partial_{J^{\frac{1}{2}}}=1+\frac{1}{24}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right)+\ldots
\end{aligned}
$$

Questions

- How difficult is the Duflo theorem?

Proofs:

$$
\begin{aligned}
& \text { Duflo }(1977) \Leftarrow \text { structure theory } \\
& \text { Kontsevich }(1997) \Leftarrow \text { graphical calculus } \\
& \text { Torossian, A.A. }(2008) \Leftarrow \text { Drinfeld associators }
\end{aligned}
$$

- Why Bernoulli numbers?

Kashiwara-Vergne conjecture

1978

$\exists A(x, y), B(x, y)$ Lie series in x and y, such that
(1) $x+y-\log \left(e^{y} e^{x}\right)=\left(1-e^{-\mathrm{ad}_{x}}\right) A+\left(e^{\mathrm{ad}_{y}}-1\right) B$,
(2) $\operatorname{tr}_{\mathfrak{g}}\left(\operatorname{ad}_{x} \circ \partial_{x} A+\operatorname{ad}_{y} \circ \partial_{y} B\right)=\frac{1}{2} \operatorname{tr}_{\mathfrak{g}}\left(\frac{\mathrm{ad}_{x}}{e^{\text {adx }}-1}+\frac{\mathrm{ad}_{y}}{e^{\text {ady }}-1}-\frac{\mathrm{ad}_{z}}{e^{\text {adz }}-1}-1\right)$.

Notation: $\bullet z=\log \left(e^{x} e^{y}\right)$,

- $\partial_{x} A: \mathfrak{g} \rightarrow \mathfrak{g}, \partial_{x} A(u)=\left.\frac{\mathrm{d}}{\mathrm{d} t} A(x+t u, y)\right|_{t=0}$

KV conjecture

Remark: $\quad \operatorname{dim} \mathfrak{g}<+\infty \Longrightarrow \operatorname{tr}_{\mathfrak{g}}$ well-defined
Theorem (Kashiwara, Vergne)
KV conjecture \Longrightarrow Duflo isomorphism

Remark: Equation (1) is easy to solve

$$
\begin{aligned}
& a=\frac{1-e^{-\mathrm{ad}_{x}}}{\operatorname{ad}_{x}} A \quad b=\frac{e^{\operatorname{ad}_{y}}-1}{\operatorname{ad}_{y}} B \\
& x+y-\log \left(e^{y} e^{x}\right)=[x, a]+[y, b]
\end{aligned}
$$

\Longrightarrow many rational solutions

Definition: \mathfrak{g} is a quadratic Lie algebra if it carries a non-degenerate symmetric bilinear form:

$$
\begin{gathered}
Q: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathbb{K}, \\
Q([x, y], z)+Q(y,[x, z])=0 .
\end{gathered}
$$

Example: \mathfrak{g} semisimple, Q Killing form + many other examples

Theorem (Torossian, A.A.)
For \mathfrak{g} quadratic,

$$
K V 1 \Longrightarrow K V 2
$$

Theorem

The KV conjecture holds true for all finite-dimensional Lie algebras.

Meinrenken, A.A

Torossian, A.A

2006, using Kontsevich graphical calculus

2008, using Drinfeld associators

Drinfeld associators

Lie algebra of infinitesimal pure braids \mathfrak{t}_{n}
Generators: $t_{i, j}, i, j=1, \ldots, n$
Relations:

$$
\begin{gathered}
t_{i, i}=0, \quad t_{i, j}=t_{j, i} \\
{\left[t_{i, j}, t_{k, l}\right]=0, \quad i, j, k, l \text { distinct }} \\
{\left[t_{i, j}+t_{i, k}, t_{j, k}\right]=0}
\end{gathered}
$$

In knot theory:

$$
{ }_{i}|------|_{j}=t_{i, j} \quad \approx \log \binom{\star \uparrow_{j}}{\left.i\right|_{j}}
$$

Drinfeld associators

Notation: $\quad t_{i, j k}=t_{i, j}+t_{i, k}$

Definition

$\Phi \in \mathbb{K} \ll x, y \gg$ is a Drinfeld associator if
(1) Φ is group-like (i.e., $\Phi=\exp ($ Lie series $)$)
(2) $\Phi=1+\frac{1}{24}[x, y]+\ldots$
(3) Pentagon equation:

$$
\Phi^{2,3,4} \Phi^{1,23,4} \Phi^{1,2,3}=\Phi^{1,2,34} \Phi^{12,3,4}
$$

$$
\Phi^{1,2,3}=\Phi\left(t_{1,2}, t_{2,3}\right), \quad \Phi^{12,3,4}=\Phi\left(t_{12,3}, t_{3,4}\right), \quad \text { etc. }
$$

Pentagon equation

Importance of associators

- in knot theory (finite type invariants)
- in number theory (multiple zeta values)
- in quantization (Tamarkin's approach)
- in Lie theory (Etingof-Kazhdan quantization of Lie bialgebras)

Theorem (Drinfeld, Le-Murakami)

The pentagon equation admits an explicit solution over \mathbb{C} :

$$
\begin{aligned}
\Phi(x, y) & =\sum_{k, m}\left(\frac{i}{2 \pi}\right)^{m_{1}+\cdots+m_{k}} \zeta\left(m_{1}, \ldots, m_{k}\right) x^{m_{1}-1} y x^{m_{2}-1} y \ldots x^{m_{k}-1} y \\
& + \text { regularized terms }
\end{aligned}
$$

where

$$
\zeta\left(m_{1}, \ldots, m_{k}\right)=\sum_{n_{1}>\cdots>n_{k}>0} \frac{1}{n_{1}^{m_{1}} \cdots n_{k}^{m_{k}}}
$$

Note: $\quad \zeta(2 m)=(-1)^{m+1} \frac{(2 \pi)^{2 m}}{2(2 m)!} B_{2 m}$

Theorem (Drinfeld)

The pentagon equation admits solutions over \mathbb{Q}
No explicit formulas available.

Definition

The (homogeneous) Grothendieck-Teichmüller Lie algebra grt consists of all $\phi \in$ free Lie $(x, y), \operatorname{deg}(\phi) \geq 3$, satisfying

$$
\phi^{1,2,3}+\phi^{1,23,4}+\phi^{2,3,4}=\phi^{12,3,4}+\phi^{1,2,34} .
$$

Theorem (Drinfeld)
$G R T=\exp (\mathfrak{g r t})$ acts freely and transitively on the set of Drinfeld associators.

Associators $\Longrightarrow \mathrm{KV}$

Let

$$
\psi\left(\Phi x \Phi^{-1}, y\right)=\left(\frac{\mathrm{d}}{\mathrm{~d} \tau} \Phi(\tau x, \tau y)\right)_{\tau=1} \Phi(x, y)^{-1}
$$

ψ is an element of the (inhomogeneous) Grothendieck-Teichmüller Lie algebra $\mathfrak{g t}$.

Recall: $\operatorname{ch}(x, y)=\ln \left(e^{x} e^{y}\right)$.
Theorem (Enriquez, Torossian, Podkopaeva, Severa, A.A.)
$A(x, y)=\psi(-\operatorname{ch}(x, y), x)$
$B(x, y)=\psi(-\operatorname{ch}(x, y), y)-\frac{1}{2} \operatorname{ch}(x, y)$
solves $K V$.

Uniqueness problem

Definition

The Kashiwara-Vergne Lie algebra krv consists of all pairs $a, b \in$ free Lie (x, y), such that

- $[x, a]+[y, b]=0$
- $\operatorname{tr}_{\mathfrak{g}}\left(\operatorname{ad}_{x} \circ \partial_{x} a+\operatorname{ad}_{y} \circ \partial_{y} b\right)=0$ for all \mathfrak{g}

Theorem (Torossian, A.A.)

$$
\phi \mapsto(\phi(-x-y, x), \phi(-x-y, y))
$$

is an injection of Lie algebras $\mathfrak{g r t} \mapsto \mathrm{krv}$

Conjectures

Conjecture: $\quad \mathfrak{g r t} \cong \mathrm{krv}$

numerical evidence up to degree 16 .

deg	1	2	3	4	5	6	7	8	9	10	11	\ldots
dim	0	0	0	0	0	0	0	1	1	0	1	\ldots

Conjectures

Number theory properties of associators \Longrightarrow Lie algebra dmro (Racinet)
Theorem (Furusho)

$$
\mathfrak{g r t} \longmapsto \mathrm{dmr}_{0}
$$

Conjecture:

$\mathfrak{g r t} \cong \mathrm{dmr}_{0}$
numerical evidence up to degree 19

Theorem (Schneps)

$$
\mathrm{dmr}_{0} \rightharpoondown \mathrm{krv}
$$

Conjecture:
$\mathrm{dmr}_{0} \cong \mathrm{krv}$

Thank You!

