Degenerate Elliptic Problems with mixed boundary conditions.

Ana Maria Amarillo Bertone

anamaria@famat.ufu.br

Federal University of Uberlândia-MG-Brazil Coauthors: César Guilherme de Almeida and Uberlândio Batista Severo

Abstract

In this work we study the model $L_p(u) = q(x)$ where, for p = 2, we have $L_p(u) = \operatorname{div}(\mathcal{K}(x)\nabla u)$ with mixed (Dirichlet and Neumann) boundary conditions; for 1 < p, $p \neq 2$ $L_p(u) = \operatorname{div}(\mathcal{K}(x)|\nabla u|^p\nabla u)$ with Dirichlet boundary condition. The non-negative-upper bounded function \mathcal{K} may vanish in a subdomain Ω' of $\Omega \subset \mathbb{R}^2$, bounded domain of the problem. We use Hilbert methods to find the nontrivial solution for the case p = 2, and variational methods otherwise. As an application, we use $\mathbf{v} = \mathcal{K}\nabla u$ as Darcy's velocity associated with the transport-diffusion equation $\frac{\partial c}{\partial t} + \nabla \cdot (vc - D(v)\nabla c) = \tilde{c}q$, $(x,t) \in \Omega \times [0,T]$, with inicial condition $c(x,0) = c_0$ and boundary condition upon D, its diffusion-dispersion tensor, to solve a system of incompressible miscible displacement with barrier. In this model \mathcal{K} represents the permeability of the soil, q the volumetric external flow rate per unit volume; \tilde{c} the specified concentration of solvent in the injection well (q > 0) and the resident concentration in the producer (q < 0).

AMS Classification: 01A35.