Anton Ayzenberg

ayzenberga@gmail.com

Lomonosov Moscow State University, Moscow

Abstract

There exists a construction which associates a simplicial complex K_P to each convex polytope P. For a simple polytope P the complex K_P coincides with the boundary ∂P^* of a polar dual polytope. In this case K_P is a simplicial sphere and its Stanley–Reisner ring $\mathbf{k}[K_P]$ is known to be Cohen–Macaulay. The global problem is to describe the properties of a simplicial complex K_P and its Stanley–Reisner ring for general convex polytope P. We develop a method to find the depth of $\mathbf{k}[K]$ for any simplicial complex K. This method is based on Hochster formula for bigraded Betti numbers of a complex K and simple topological arguments involving Mayer–Vietoris exact sequence for simplicial cohomology. In

the presentation we apply this method to the complex $K_{\cal P}$ and get an equality

$$\operatorname{depth} \mathbf{k}[K_P] = \dim P$$

for each convex polytope P.

AMS Classification: Primary 05E45; Secondary 13C15.