Topological Obstructions to Totally Skew Embeddings

Djordje Baralić

Mathematical Institute SASA, Serbia

djbaralic@mi.sanu.ac.rs

Abstract

Affine subspaces U_1, \ldots, U_l of \mathbb{R}^N are called skew if their affine span has dimension $\dim(U_1) + \cdots + \dim(U_l) + l - 1$. An embedding $f: M^n \to \mathbb{R}^N$ of a smooth manifold is called *totally skew* if for each two distinct points $x, y \in M^n$ the affine subspaces $df(T_xM)$ and $df(T_yM)$ of \mathbb{R}^N are skew. We study the invariant $N(M^n)$ defined as the smallest dimension N such that there exists a totally skew embedding of a smooth manifold M^n in \mathbb{R}^N . This problem is naturally related to the question of estimating the geometric dimension of the stable normal bundle of the configuration space $F_2(M^n)$ of ordered pairs of distinct points in M^n . We demonstrate that in a number of interesting cases the lower bounds on $N(M^n)$ obtained by this method are quite accurate and very close to the best known general upper bound $N(M^n) \leq 4n + 1$ established by Ghomi and Tabachnikov. We also provide some evidence for the conjecture that for every *n*-dimensional, compact smooth manifold M^n (n > 1),

$$N(M^n) \le 4n - 2\alpha(n) + 1.$$

AMS Classification: 57N35.