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1 Preliminaries

We introduce here the main concepts, recall definitions and facts, and set no-
tation. For more information on positive continuous-time and discrete-time
systems, the reader is referred to e.g. [FR], and for information on time scales
calculus, to e.g. [BP].

1.1 Positive math

By R we shall denote the set of all real numbers, by Z the set of integers, and
by N the set of natural numbers (without 0). We shall also need the set of
nonnegative real numbers, denoted by R+ and the set of nonnegative integers
Z+, i.e. N ∪ {0}. Similarly, Rk+ will mean the set of all column vectors in
Rk with nonnegative components and Rk×p+ will consist of k × p real matrices
with nonnegative elements. If A ∈ Rk×p+ we write A ≥ 0 and say that A is
nonnegative. A nonnegative matrix A will be called positive if at least one of
its elements is greater than 0. Then we shall write A > 0.

A positive column or row vector is called monomial if one of its components
is positive and all the other are zero. A monomial column in Rn+ has the form
αek for some α > 0 and 1 ≤ k ≤ n, where ek denotes the column with 1 at
the kth position and other elements equal 0. Then we say that the column is
k-monomial. An n× n matrix A is called monomial if all columns and rows of
A are monomial. Then A is invertible and its inverse is also positive. Moreover,
we have the following important fact.

Proposition 1.1. A positive matrix A has a positive inverse if and only if A
is monomial.

It will be convenient to extend the set of all real numbers adding one element.
It will be denoted by∞ and will mean the positive infinity. We set R̄ := R∪{∞}
and R̄+ := R+ ∪{∞}. If a ∈ R then we define a+∞ =∞. Moreover, for a ∈ R
and a > 0 we set a/0 = ∞ and a/∞ = 0. Of course ∞ > 0. If a matrix A
has elements from R̄, then the notions of nonnegativity and positivity have the

1



same meanings as before and are denoted in the same way. Addition of such
matrices is defined in the standard way, but we shall not need multiply or invert
such matrices.

A subset C of Rn is called a (positive) cone if for any α ∈ R+ and any x ∈ C,
αx ∈ C. It is clear that Rn+ is a cone.

1.2 Calculus on time scales

Calculus on time scales is a generalization of the standard differential calculus
and the calculus of finite differences.

A time scale T is an arbitrary nonempty closed subset of the set R of real
numbers. In particular T = R, T = hZ for h > 0 and T = qN := {qk, k ∈ N} for
q > 1 are time scales. We assume that T is a topological space with the relative
topology induced from R. If t0, t1 ∈ T, then [t0, t1]T denotes the intersection of
the ordinary closed interval with T. Similar notation is used for open, half-open
or infinite intervals.

For t ∈ T we define the forward jump operator σ : T→T by σ(t) := inf{s ∈ T :
s > t} if t 6= sup T and σ(sup T) = sup T when sup T is finite; the backward jump
operator ρ : T→T by ρ(t) := sup{s ∈ T : s < t} if t 6= inf T and ρ(inf T) = inf T
when inf T is finite; the forward graininess function µ : T→[0,∞) by µ(t) :=
σ(t)− t; the backward graininess function ν : T→[0,∞) by ν(t) := t− ρ(t).

If σ(t) > t, then t is called right-scattered, while if ρ(t) < t, it is called left-
scattered. If t < sup T and σ(t) = t then t is called right-dense. If t > inf T and
ρ(t) = t, then t is left-dense.

The time scale T is homogeneous, if µ and ν are constant functions. When
µ ≡ 0 and ν ≡ 0, then T = R or T is a closed interval (in particular a half-line).
When µ is constant and greater than 0, then T = µZ.

Let Tk := {t ∈ T : t is nonmaximal or left-dense}. Thus Tk is got from T
by removing its maximal point if this point exists and is left-scattered.

Let f : T→R and t ∈ Tk. The delta derivative of f at t, denoted by f∆(t),
is the real number with the property that given any ε there is a neighborhood
U = (t− δ, t+ δ) ∩ T such that

|(f(σ(t))− f(s))− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|

for all s ∈ U . If f∆(t) exists, then we say that f is delta differentiable at t.
Moreover, we say that f is delta differentiable on Tk provided f∆(t) exists for
all t ∈ Tk.

Example 1.2. If T = R, then f∆(t) = f ′(t). If T = hZ, then f∆(t) =
f(t+h)−f(t)

h . If T = qN, then f∆(t) = f(qt)−f(t)
(q−1)t .

A function f : T→R is called rd-continuous provided it is continuous at
right-dense points in T and its left-sided limits exist (finite) at left-dense points
in T. If f is continuous, then it is rd-continuous.

A function F : T→R is called an antiderivative of f : T→R provided F∆(t) =
f(t) holds for all t ∈ Tk. Let a, b ∈ T. Then the delta integral of f on the interval
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[a, b)T is defined by∫ b

a

f(τ)∆τ :=
∫

[a,b)T

f(τ)∆τ := F (b)− F (a).

It is more convenient to consider the half-open interval [a, b)T than the closed
interval [a, b]T in the definition of the integral. If b is a left-dense point, then
the value of f at b would not affect the integral. On the other hand, if b is left-
scattered, the value of f at b is not essential for the integral (see Example 1.3).
This is caused by the fact that we use delta integral, corresponding to the
forward jump function.

Riemann and Lebesgue delta integrals on time scales have been also defined
(see e.g. [G]). It can be shown that every rd-continuous function has an an-
tiderivative and its Riemann and Lebesgue integrals agree with the delta integral
defined above.

We have a natural property:∫ b

a

f(τ)∆τ =
∫ c

a

f(τ)∆τ +
∫ b

c

f(τ)∆τ

for any c ∈ (a, b)T . Moreover, if f is rd-continuous, f(t) ≥ 0 for all a ≤ t < b

and
b∫
a

f(τ)∆τ = 0, then f ≡ 0.

Example 1.3. If T = R, then
b∫
a

f(τ)∆τ =
b∫
a

f(τ)dτ , where the integral on

the right is the usual Riemann integral. If T = hZ, h > 0, then
b∫
a

f(τ)∆τ =

b
h−1∑
t= a

h

f(th)h for a < b.

1.3 Linear systems on time scale

Let us consider the system of delta differential equations on a time scale T:

x∆(t) = A(t)x(t), (1)

where x(t) ∈ Rn and A(t) is a n × n matrix. We assume that A is continuous
on T.

Proposition 1.4. Equation (1) with initial condition x(t0) = x0 has a unique
forward solution defined for all t ∈ [t0,+∞)T.

The matrix exponential function (at t0) for A is defined as the unique forward
solution of the matrix differential equation X∆(t) = A(t)X(t), with the initial
condition X(t0) = I. Its value at t is denoted by eA(t, t0).
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Proposition 1.5. The following properties hold for every t, s, r ∈ T such that
r ≤ s ≤ t:
i) eA(t, t) = I;
ii) eA(t, s)eA(s, r) = eA(t, r);

Let us consider now a nonhomogeneous system

x∆(t) = A(t)x(t) + f(t) (2)

where A is continuous and f are rd-continuous.

Theorem 1.6. Let t0 ∈ T. System (2) for the initial condition x(t0) = x0 has
a unique forward solution of the form

x(t) = eA(t, t0)x0 +
∫ t

t0

eA(t, σ(τ))f(τ)∆τ. (3)

2 Positive control systems

Let n ∈ N be fixed. From now on we shall assume that the time scale T consists
of at least n+ 1 elements.

Let us consider a linear control system, denoted by Σ, and defined on the
time scale T:

x∆(t) = A(t)x(t) +B(t)u(t) (4)

where t ∈ T, x(t) ∈ Rn, u(t) ∈ Rm, A and B are continuous.
We assume that the control u is a piecewise continuous function defined on

some interval [t0, t1)T, depending on u, where t0 ∈ T and t1 ∈ T or t1 =∞. We
shall assume that at each point t ∈ [t0, t1)T, at which u is not continuous, u is
right-continuous and has a finite left-sided limit if t is left-dense. This allows to
solve (4) step by step. Moreover, for a finite t1 we can always evaluate x(t1). For
t1 being left-scattered we do not need the value of u at t1, and for a left-dense
t1 we just take a limit of x(t) at t1.

Definition 2.1. We say that system Σ is positive if for any t0 ∈ T, any initial
condition x0 ∈ Rn+, any control u : [t0, t1)T→Rm+ and any t ∈ [t0, t1]T, the
solution x of (4) satisfies x(t) ∈ Rn+.

By the separation principle we have the following characterization.

Proposition 2.2. The system Σ is positive if and only if eA(t, t0) ∈ Rn×n+ for
every t, t0 ∈ T such that t ≥ t0, and B(t) ∈ Rn×m+ for t ∈ T.

3 Reachability

If Σ is a positive system, then for a nonnegative initial condition x0 and a
nonnegative control u, the trajectory x stays in Rn+. One may be interested in
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properties of the reachable sets of the system. For simplicity we assume that
the initial condition is x0 = 0. Let x(t1, t0, 0, u) mean the trajectory of the
system corresponding to the initial condition x(t0) = 0 and the control u, and
evaluated at time t1. We shall define various controllability properties.

Definition 3.1. Let t0, t1 ∈ T, t0 < t1. The positive reachable set (from
0) of the system Σ on the interval [t0, t1]T is the set R[t0,t1]

+ consisting of all
x(t1, t0, 0, u), where u is a nonnegative control on [t0, t1)T.

The system Σ is positively reachable on [t0, t1]T if R[t0,t1]
+ = Rn+.

To study positive reachability let us introduce a modified Gram matrix re-
lated to the control system.

Definition 3.2. Let M ⊆ {1, . . . ,m} and t0, t1 ∈ T, t0 < t1. For each k ∈ M
let Sk be a subset of [t0, t1)T that is a union of finitely many disjoint intervals
of T of the form [τ0, τ1)T, and let SM = {Sk : k ∈ M}. By the Gram matrix of
system (4) corresponding to t0, t1, M and SM we mean the matrix

W := W t1
t0 (M,SM ) :=

∑
k∈M

∫
Sk

eA(t1, σ(τ))bk(τ)bTk (τ)eA(t1, σ(τ))T∆τ. (5)

Then we have the following characterization:

Theorem 3.3. Let t0, t1 ∈ T, t0 < t1. System (4) is positively reachable on
[t0, t1]T iff there are M ⊆ {1, . . . ,m} and the family SM = {Sk : k ∈ M} of
subsets of [t0, t1]T such that the matrix W = W t1

t0 (M,SM ) is monomial.

Proof. “⇐” Let x̄ ∈ Rn+. By ẽ1,. . . , ẽm we denote the vectors of the standard
basis in Rm. Define control u : [t0, t1)→Rm+ by u(τ) =

∑
k∈M uk(τ)ẽk, where

uk(τ) = bk(τ)T eA(t1, σ(τ))TW−1x̄ for t ∈ Sk and uk(τ) = 0 for t /∈ Sk. The
control u is nonnegative and

x(t1) =
∫ t1

t0

eA(t1, σ(τ))B(τ)u(τ)∆τ =
∑
k∈M

∫ t1

t0

eA(t1, σ(τ))bk(τ)uk(τ)∆τ

=
∑
k∈M

∫
Sk

eA(t1, σ(τ))bk(τ)bTk (τ)eA(t1, σ(τ))TW−1x̄∆τ = x̄.

Thus (4) is positively reachable on [t0, t1]T.
“⇒” Positive reachability implies that all the vectors e1, . . . , en can be reached
using nonnegative controls. Let us fix some ei. Then there is a piecewise
continuous nonnegative control u = (u1, . . . , um) on [t0, t1)T such that

ei =
m∑
j=1

∫ t1

t0

eA(t1, σ(τ))bj(τ)uj(τ)∆τ.

Since all the integrals in the sum are nonnegative, for some ki the integral∫ t1

t0

eA(t1, σ(τ))bki
(τ)uki

(τ)∆τ
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is an i-monomial vector. Then for every τ ∈ [t0, t1)T the vector eA(t1, σ(τ))bki
(τ)uki

(τ)
is either i-monomial or 0. Let Ti be the set of all τ for which eA(t1, σ(τ))bki

(τ)uki
(τ)

is i-monomial. Then for τ ∈ Ti the matrix

eA(t1, σ(τ))bki
(τ)bTki

(τ)eA(t1, σ(τ))T

is diagonal with the only nonzero element at the ith place. The same is true for
the matrix

∫
Ti
eA(t1, σ(τ))bki

(τ)bTki
(τ)eA(t1, σ(τ))T∆τ . This implies that the

matrix

C :=
n∑
i=1

∫
Ti

eA(t1, σ(τ))bki
(τ)bTki

(τ)eA(t1, σ(τ))T∆τ

is monomial (and diagonal). Let M consist of all ki for i = 1, . . . , n. Observe
that if ki = kj for i 6= j, then Ti ∩ Tj = ∅. Define Sk =

⋃
ki=k

Ti and let
SM = {Sk : k ∈M}. Then

C =
∑
k∈M

∫
Sk

eA(t1, σ(τ))bk(τ)bTk (τ)eA(t1, σ(τ))T∆τ = W t1
t0 (M,SM ),

so W t1
t0 (M,SM ) is monomial.

Corollary 3.4. If the ordinary Gram matrix

W t1
t0 =

∫ t1

t0

eA(t1, σ(τ))B(τ)BT (τ)eA(t1, σ(τ))T∆τ

is monomial, then system (4) is positively reachable on [t0, t1]T.

Proof. Observe that W t1
t0 = W t1

t0 (M,SM ) for M = {1, . . . ,m} and Sk = [t0, t1)T
for all k ∈M . Thus positive reachability follows from Theorem 3.3.

Remark 3.5. The condition that W t1
t0 is monomial is not necessary for positive

reachability on [t0, t1]T. Consider the system

x∆ =
(
−1 1
1 0

)
x+

(
1 1
0 1

)
u (6)

on T = Z. Choose t0 = 0 and t1 = 2. System (6) is positively reachable on
[t0, t1]T. Indeed, let M = {1} and S1 = [0, 2)T. Then

W =b1bT1 + (I +A)b1bT1 (I +A)T

=
(

1
0

)
(1, 0) +

(
0 1
1 1

)(
1
0

)
(1, 0)

(
0 1
1 1

)
=
(

1 0
0 1

)
is a monomial matrix. However

W t1
t0 = BBT + (I +A)BBT (I +A)T =

(
3 3
3 6

)
is not monomial.
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Corollary 3.6. If there exists M ⊆ {1, . . . ,m} such that the matrix
W t1
t0 (M) =

∫ t1
t0
eA(t1, σ(τ))B̃(τ)B̃T (τ)eA(t1, σ(τ))T∆τ is monomial, where B̃ is

a submatrix of B consisting of column bk, k ∈ M , then system (4) is positively
reachable on [t0, t1]T.

Proof. Observe that W t1
t0 (M) = W t1

t0 (M,SM ) where Sk = [t0, t1)T for all k ∈M .
Thus positive reachability follows from Theorem 3.3.

Remark 3.7. The condition that W t1
t0 (M) is monomial is not necessary for pos-

itive reachability on [t0, t1]T. Let the time scale T = {0} ∪ [1, 2]∪ {3}. Consider
the system

x∆ =
(
−1 0
1 −1

)
x+

(
1
0

)
u. (7)

The system is positively reachable on [0, 3]T. Indeed, let M = {1} and let
S1 = [0, 1)T ∪ [2, 3)T. Then

W =
∫

[0,1)T

eA(3, σ(τ))BBT eA(3, σ(τ))T∆τ

+
∫

[2,3)T

eA(3, σ(τ))BBT eA(3, σ(τ))T∆τ

=
(

0 0
0 e−2

)
+
(

1 0
0 0

)
=
(

1 0
0 e−2

)
is monomial. Observe that we remove here the points t with µ(t) = 0. This is
essential in order to get a monomial matrix. To calculate the full Gram matrix
we have to add to W the following matrix∫

[1,2)

eA(3, σ(τ))BBT eA(3, σ(τ))T dτ.

Its off-diagonal elements are equal to
∫ 2

1
(3− τ)e−2(3−τ)dτ . Since they are posi-

tive, W t1
t0 (M) is not monomial.

From the general characterization of positive reachability presented in The-
orem 3.3 we can deduce more concrete results for particular time scales. For
T = R we get very restrictive conditions for positive reachability. The following
result was first obtained in [CA] for constant matrices A and B.

Proposition 3.8. Let T = R and t0, t1 ∈ R, t0 < t1. Let A and B be analytic.
System (4) is positively reachable on [t0, t1] iff A is diagonal and B contains an
n× n submatrix that is monomial for almost every t ∈ [t0, t1] (so m ≥ n).

Proof. “⇐” Let B̃(t) denote the monomial submatrix of B(t) and let the indices
of columns of B̃(t) form the set M . Then B̃(t)B̃T (t) is a diagonal matrix with
all the diagonal elements being positive and so is

W t1
t0 (M) =

∫ t1

t0

eA(t1, σ(τ))B̃(t)B̃T (t)eA(t1, σ(τ))T∆τ.
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Thus W t1
t0 (M) is monomial, so system (4) is positively reachable by Corol-

lary 3.6. Observe that the proof of this implication works for all time scales.
“⇒” Assume that the system is positively reachable on [t0, t1]. From Theo-

rem 3.3 it follows that for some set M and some family SM the Gram matrix
W = W t1

t0 (M,SM ) is monomial. Let jth column of W be i-monomial. Then for
some k ∈ M and for τ from some subinterval of [t0, t1) the jth column of the
matrix eA(t1, τ)bk(τ)bTk (τ)(eA(t1, τ))T is i-monomial. Let c(τ) = eA(t1, τ)bk(τ).
Since the jth column of the matrix c(τ)c(τ)T is i-monomial, then c(τ) must be
j-monomial and eventually i = j. This means that at least one column of
eA(t1, τ) must be i-monomial. As the exponential matrix is invertible such a
column must be unique. This implies that bk(τ) is monomial. Moreover the
i-monomial column of eA(t1, τ) must be its ith column. Otherwise we would
get 0 on the diagonal of the analytic exponential matrix for all τ from some
interval, which is impossible. Thus eA(t1, τ) is diagonal on some interval, which
means that A(t) is also diagonal. Now to get all n monomial columns in W we
need n different monomial columns bk(t). Thus B(t) contains an n×n monomial
submatrix.

For discrete homogeneous time scales the conditions for positive reachability
are much less restrictive.

Proposition 3.9. Let T = µZ for a constant µ > 0. Let A and B be constant.
Let t0 ∈ T and t1 = t0 + kµ for some k ∈ N. System (4) is positively reachable
on [t0, t1]T iff the matrix [B, (I+µA)B, . . . , (I+µA)k−1B] contains a monomial
submatrix.

Proof. “⇐” Observe that x(t1) =
∑k−1
i=0

∑m
j=1(I + µA)ibjuj(k − 1 − i). If

(I+µA)ibj = γes for some γ > 0, then setting uj(k−1− i) = 1/γ and all other
components and values at different times putting to 0 we get x(t1) = es. This
means positive reachability on [t0, t1]T.
“⇒” By Theorem 3.3 positive reachability implies existence of a set M and
subsets Sk of [t0, t1] for k ∈M such that the matrix

W =
∑
k∈M

∫
Sk

eA(t1, σ(τ))bkbTk eA(t1, σ(τ))T∆τ

is monomial. Moreover∫
Sk

eA(t1, σ(τ))bkbTk eA(t1, σ(τ))T∆τ =∑
t∈Sk

(I + µA)(t1−t−µ)/µbkb
T
k ((I + µA)(t1−t−µ)/µ)Tµ.

This implies that for every i = 1, . . . , n there are k ∈ M , t ∈ Sk and 0 ≤ j ≤ n
such that the jth column of (I + µA)(t1−t−µ)/µbkb

T
k ((I + µA)(t1−t−µ)/µ)T is

i-monomial. This means that the column (I + µA)(t1−t−µ)/µbk is i-monomial.
But this column is one of the columns of the matrix [B, (I + µA)B, . . . , (I +
µA)k−1B].
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Proposition 3.9 may be extended to nonhomogeneous discrete time scales
and nonconstant matrices A and B.

Proposition 3.10. Assume that µ(t) > 0 for all t ∈ T, t0 ∈ T and t1 = σk(t0).
System (4) is positively reachable on [t0, t1]T iff the matrix

[B(σk−1(t0)), (I + µ(σ(t0))A(σ(t0)))B(σk−2(t0)),

(I + µ(σ2(t0))A(σ2(t0)))(I + µ(σ(t0))A(σ(t0)))B(σk−3(t0)), . . . ,

(I + µ(σk−1(t0))A(σk−1(t0))) . . . (I + µ(σ(t0))A(σ(t0)))B(t0)]

contains a monomial submatrix.

The proof is similar to the proof of Proposition 3.9, but we have to take
into account that the exponential matrix is no longer a power of I + µA for a
constant µ but rather a product of such terms with possibly different values of
µ and A. This criterion may be used for systems on T = qN.

References

[BP1] Z. Bartosiewicz and E. Paw luszewicz, Unification of continuous-time
and discrete-time systems: the linear case, Proceedings of Sixteenth In-
ternational Symposium on Mathematical Theory of Networks and Sys-
tems (MTNS2004), Katholieke Universiteit Leuven, Belgium, 2004.

[BP2] Z. Bartosiewicz and E. Paw luszewicz, Realizations of linear control sys-
tems on time scales, Control Cybernet., 35 (2006), 769–786.

[BP] M. Bohner and A. Peterson, Dynamic Equations on Time Scales,
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