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Smoluchowski’s coagulation equations in a nutshell

Smoluchowski introduced a system of ODE’s to describe the
evolution of the concentrations of particles in a medium where
pairs of particles merge.

The area has been intensively studied by physicists, chemists, and
mathematicians.
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A particle is characterized by its mass m ∈ N.
κ(m,m′) specifies the rate at which a pair {m,m′} coalesces.
ct(m) denotes the concentration of particles m at time t,

d

dt
ct(m) =

1

2

m−1∑
m′=1

ct(m′)ct(m −m′)κ(m′,m −m′)

−ct(m)
∞∑

m′=1

ct(m′)κ(m,m′) .
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Dual formulation: write

〈ct , f 〉 =
∞∑

m=1

f (m)ct(m) ,

where f : N∗ → R has finite support.

Then

d

dt
〈ct , f 〉

=
1

2

∞∑
m=1

∞∑
m′=1

(f (m + m′)− f (m)− f (m′))κ(m,m′)ct(m)ct(m′)

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Basic notions
Multiplicative kernel and gelation
Stochastic coalescence and random graph process

Dual formulation: write

〈ct , f 〉 =
∞∑

m=1

f (m)ct(m) ,

where f : N∗ → R has finite support.

Then

d

dt
〈ct , f 〉

=
1

2

∞∑
m=1

∞∑
m′=1

(f (m + m′)− f (m)− f (m′))κ(m,m′)ct(m)ct(m′)

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Basic notions
Multiplicative kernel and gelation
Stochastic coalescence and random graph process

Dynamics suggest that the average mass of particles

〈ct , Id〉 =
∞∑

m=1

mct(m)

might be conserved.

Not always true. Gelation may occur :

Tgel := inf{t > 0 : 〈ct , Id〉 6= 〈c0, Id〉} <∞

for a large class of coagulation kernels.
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Gelation can be interpreted as the formation of giant particles
which are not taken into account in the average mass of particles.

The prototype of kernels for which this occurs is the multiplicative
one:

κ(m,m′) = m ·m′ .
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Suppose now that
κ(m,m′) = m ·m′

and mono-disperse initial conditions c0(m) = 1m=1.

Then for t < Tgel,

d

dt
ct(m) =

1

2

m−1∑
m′=1

ct(m′)ct(m −m′)m′(m −m′)−mct(m).
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Solution step by step (McLeod):

ct(m) = tm−1mm−2e−mt/m! , m ∈ N∗.

Only valid before the gelation time !

Indeed
∞∑

m=1

tm−1mm−1

m!
e−tm

{
= 1 if t ≤ 1
< 1 otherwise.

In particular Tgel = 1.
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Marcus and Lushnikov introduced finite systems of particles
such that a pair (m,m′) coagulates at a rate κ(m,m′)/n,
independently of the other pairs.

Hydrodynamic limits of Marcus-Lushnikov processes yield
solutions to Smoluchowski equations before gelation; cf. Jeon,
Norris, etc.

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Basic notions
Multiplicative kernel and gelation
Stochastic coalescence and random graph process

Marcus and Lushnikov introduced finite systems of particles
such that a pair (m,m′) coagulates at a rate κ(m,m′)/n,
independently of the other pairs.

Hydrodynamic limits of Marcus-Lushnikov processes yield
solutions to Smoluchowski equations before gelation; cf. Jeon,
Norris, etc.

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Basic notions
Multiplicative kernel and gelation
Stochastic coalescence and random graph process

For the multiplicative kernel, this is related to the random
graph process of Erdős and Rényi, with edges appearing at
rate 1/n between each pair of vertices.

The rate at which two clusters of size m and m′ get
connected is (m ·m′)/n. The process of the sizes of the
clusters is a Marcus-Lushnikov multiplicative coalescent.

Gelation ⇐⇒ emergence of a giant component for t > 1.

McLeod’s solution before gelation can be recovered from a
statistical analysis of the clusters’ sizes.

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Basic notions
Multiplicative kernel and gelation
Stochastic coalescence and random graph process

For the multiplicative kernel, this is related to the random
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graph process of Erdős and Rényi, with edges appearing at
rate 1/n between each pair of vertices.

The rate at which two clusters of size m and m′ get
connected is (m ·m′)/n. The process of the sizes of the
clusters is a Marcus-Lushnikov multiplicative coalescent.

Gelation ⇐⇒ emergence of a giant component for t > 1.

McLeod’s solution before gelation can be recovered from a
statistical analysis of the clusters’ sizes.

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Basic notions
Multiplicative kernel and gelation
Stochastic coalescence and random graph process

For the multiplicative kernel, this is related to the random
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Macroscopic model for coagulation with limited
aggregations

Toy model for the formation of polymers = clusters of atoms.

A particle is described by its number of available connexions
(arms) and its size (number of atoms).

Arms serve to perform aggregations.

A pair of arms is consumed for each aggregation.
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Generic particle (a,m), a is the number of arms, m the mass.

ct(a,m) = concentration of particles (a,m) at time t.

Every pair of arms is activated at the same rate.

Transition

{(a,m), (a′,m′)} −→ (a + a′ − 2,m + m′)

occurs at time t with intensity

act(a,m)× a′ct(a′,m′) .
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Evolution of the concentrations is specified by variation of
Smoluchowski’s equation

d

dt
ct(a,m)

=
1

2

a+1∑
a′=1

m−1∑
m′=1

a′ct(a′,m′) · (a− a′ + 2)ct(a− a′ + 2,m −m′)

−
∞∑

a′=1

∞∑
m′=1

act(a,m) · a′ct(a′,m′).
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This resembles multiplicative Smoluchowski’s equation.

Assume that the initial condition is purely atomic, i.e.

c0(a,m) = µ(a)1m=1 ,

where µ is a measure on N with finite first two moments

Aj :=
∞∑
a=1

ajµ(a) <∞ for j = 1, 2 .
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The system can be solved explicitly following the key steps :

Introduce generating functions of concentrations.

This yields a non-linear PDE which can be reduced to a
quasi-linear and then solved by the method of characteristics.

One inverts the generating functions and recovers the
concentration (requires a version of Lagrange inversion
formula).
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The gelation time is then given by

Tgel =

{
∞ if A2 ≤ 2A1,

1/(A2 − 2A1) if A2 > 2A1,

Note that Tgel can be infinite, a situation which never occurs for
Smoluchowski’s equation with the multiplicative kernel !
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Theorem

There is a unique solution on [0,Tgel) :

ct(a,m) =
(a + m − 2)!

a!m!
Am
1 tm−1(1 + A1t)−(a+m−1)ν∗m(a + m−2) ,

where

ν(j) =
j + 1

A1
µ(j + 1) , j ∈ N

and

ν∗m = ν ∗ · · · ∗ ν︸ ︷︷ ︸
m times

is the m-th convolution power of ν.
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Corollary

Suppose no gelation (A2 ≤ 2A1). Then as time tends to ∞, there
is a limiting concentration

c∞(a,m) = lim
t→∞

ct(a,m)

which is 0 for a 6= 0 and

c∞(0,m) =
A1

m(m − 1)
ν∗m(m − 2) .

Jean Bertoin Coagulations with limited aggregations



Smoluchowski’s coagulation equations
Macroscopic model with limited aggregations

Microscopic version in the sub-critical case
Gelation and self-organized critically

Some references

Dynamics with limited aggregations
Solution, gelation and limiting concentrations

A similar formula holds for in the case when gelation occurs:

Corollary (Normand and Zambotti)

Suppose gelation occurs (A2 > 2A1). Then for some β > 1,

lim
t→∞

ct(0,m) =
A1

m(m − 1)
βm−1ν∗m(m − 2) .
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The formula resembles that for the distribution of the total
population in a Galton-Watson branching process with
reproduction law ν and 2 ancestors !
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Microscopic version in the sub-critical case

Simple stochastic algorithm which produces random multi-graphs
with pre-described degrees:

Consider a set of vertices V where each vertex v has a degree d(v)
(number of arms attached to v).

A configuration is obtained by joining pairs of arms uniformly at
random to create edges.
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Our aim is to analyze statistically clusters (connected components)
in a large random configuration.

When the degrees of vertices are not too large, most clusters are
tree = simple connected graph with no loops or cycles.

To define the shape of a tree, we distinguish an arm called the
root and use the breadth-first enumeration of vertices :
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Once vertices of a tree have been enumerated, v1, v2, . . ., the
shape of the tree is determined by the sequence of degrees

S = (d(v1), d(v2), . . .) .
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Let ν be a probability measure on N with
∑

iν(i) ≤ 1.

Consider a Galton-Watson branching process with reproduction law
ν and started from two ancestors, denoted by 1 and 2.

The genealogy can be represented by a pair of trees.

Further connect the two ancestors by an additional oriented edge
1→ 2.

The distribution on the space of finite trees is denoted by GWν
2 .
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For each n, consider a set Vn of n vertices and a degree function
dn : Vn → N∗. Introduce the empirical distribution of the degrees

µn(i) :=
1

n
#{v ∈ Vn : dn(v) = i} , i ∈ N∗ .

Assume that for every i ∈ N∗

lim
n→∞

µn(i) := µ(i) and lim
n→∞
〈µn, Id〉 = 〈µ, Id〉.
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Introduce the empirical measure of the shapes of clusters :

εn =
1

Dn

∑
a

δSn(a)

where Sn(a) denotes the shape of the cluster rooted at the arm a
and

Dn =
∑
v∈Vn

d(v) .
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Theorem

Suppose
∞∑
i=1

i(i − 2)µ(i) ≤ 0.

Then for every shape S

lim
n→∞

εn(S) = GWν
2(S) in probability,

where

ν(i) =
(i + 1)µ(i + 1)∑

jµ(j)
, i ∈ N .
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The condition
∞∑
i=1

i(i − 2)µ(i) ≤ 0.

is necessary and sufficient for the absence of giant clusters in the
configuration model (Molloy and Reed).

It is equivalent to non-gelation (A2 ≤ 2A1) in the setting of
coagulation equations with limited aggregations.

It terms of the reproduction law ν, it can be rephrased as∑
iν(i) ≤ 1.
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We can now recover with probabilistic arguments the formula for
the limiting concentrations of coagulation equations with limited
aggregations:

Corollary

For k ≥ 2 denote by Cn(k) the number of clusters of size k in the
random configuration on Vn. Then

lim
n→∞

n−1Cn(k) =
A1

k(k − 1)
ν∗k(k − 2) in probability ,

where A1 =
∑

iµ(i).
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Indeed it is known (Dwass) that the distribution of the total
population generated by two ancestors in a branching process with
reproduction law ν

GWν
2(k) =

2

k
ν∗k(k − 2) ,

where ν∗k stands for the k-th convolution power of ν.
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Note that a tree of size k has exactly 2(k − 1) arms, and thus is
counted 2(k − 1) times in the empirical measure εn.

The corollary then follows from the previous theorem, taking into
account this bias.
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Gelation and self-organized critically

We present succinctly and informally some recent results due to
Merle and Normand in the supercritical case.

Gelation is modeled in the stochastic case by introducing a
threshold α(n) such that ‘giant’polymers with size greater than
α(n) fall into the gel.

Only particles with size less than α(n) are allowed to coagulate,
the other are removed from the system.
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Merle and Normand show that the empirical measure µnt of the
number of used arms in the solution at time t converges to a
deterministic measure µt .

µt is sub-critical when t < Tgel and exactly critical for t ≥ Tgel.

This is an illustration of self-organized criticality.
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Further the empirical distribution of the shapes of polymers at
time t converges to the law of a Galton-Watson tree with
reproduction distribution νt and two ancestors,

GWνt
2 .

Using Dwass’ formula, this yields probabilistic explanations of the
deterministic results on coagulation equations with limited
aggregations.
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