An analogue of the Variational Principle for group actions

Andrzej Biś

Abstract

A classical discrete-time dynamical system consists of a non-empty set X endowed with a structure and a cyclic group or a cyclic semigroup $G = \langle f \rangle$ generated by a map $f: X \to X$ which preserves the structure of X. Topological dynamical system consists of topological space X and continuous map $f: X \to X$.

It is well known that a continuous map $f: X \to X$ of a compact metric space X determines a f-invariant measure μ and one can define a measure-theoretic entropy $h_{\mu}(f)$ with respect to μ . A relationship between topological entropy and measure-theoretic entropy of a map $f: X \to X$ is established by the Variational Principle, which asserts that

$$h_{top}(f) = \sup\{h_{\mu}(f) : \mu \in M(X, f)\},\$$

where μ ranges over the set M(X, f) of all f-invariant Borel probability measures on X. We obtain a generalized dynamical system by exchanging the cyclic group $G = \langle f \rangle$, generated by a single map $f: X \to X$, for a finitely generated group of homeomorphisms of X.

Ghys, Langevin and Walczak [**GLW**] define a notion of topological entropy $h_{top}(G, G_1)$ of a finitely generated group G generated by a finite symmetric set G_1 of homeomorphisms of a compact metric space (X, d). If $s(n, \epsilon)$ denotes the maximal cardinality of any (n, ϵ) —separated subset of X then

$$h_{top}(G, G_1) := \lim_{\epsilon \to 0} \limsup_{n \to \infty} \frac{\log(s(n, \epsilon))}{n}.$$

A subset $A \subset X$ is (n, ϵ) —separated if for any two distinct points $x, y \in A$ there exists a map $g \in G$ such that g is a composition of at most n generators from G_1 and $d(g(x), g(y)) \ge \epsilon$.

In general, there are many examples of finitely generated groups of homeomorphisms that do not admit any non-trivial invariant measure.

Brin and Katok [**BK**] consider a compact metric space (X, d) with a continuous mapping $f: X \to X$ preserving a Borel probability non-atomic measure m. They define a local measure entropy $h_m(f, x)$ of f with respect to m at a point $x \in X$ and shows the interrelations between a measure-theoretic entropy and dimension-like characteristics of smooth dynamical systems.

We generalize the notion of local measure entropy for the case of a group of homeomorphisms of a metric space and we introduce an upper local measure entropy $h_{\mu}^{G}(x)$ and a lower local measure entropy $h_{\mu,G}(x)$ of a group G with respect to a Borel probability measure μ defined on X. We apply the theory of C-structures, elaborated by Pesin in [**PePi**], [**Pes2**] and [**Pes**], to construct a dimensional type entropy-like invariant and we prove that it coincides with the topological entropy of a group. This approach allows us to obtain an analogue of the variational principle for group actions which is stated in Theorem 1 and Theorem 2.

Theorem 1(in [**Bis**]). Let (G, G_1) be a finitely generated group of homeomorphisms of a compact oriented Riemannian manifold (M, d). Let E be a Borel subset of M, $s \in (0, \infty)$ and μ_v the natural volume measure on M. If

$$h_{u_n}^G(x) \leq s$$
 for all $x \in E$ then $h_{top}((G, G_1), E) \leq s$.

Theorem 2(in [**Bis**]). Let (G, G_1) be a finitely generated group of homeomorphisms of a compact metric space (X, d). Let E be a Borel subset of X and $s \in (0, \infty)$. Denote by μ a Borel probability measure on X. If

$$h_{\mu,G}(x) \ge s$$
 for all $x \in E$ and $\mu(E) > 0$ then $h_{top}((G,G_1),E) \ge s$.

Theorem 1 and Theorem 2 are a generalization of Theorem 1 of Ma and Wen $[\mathbf{MW}]$.

References

- [Bis] Andrzej Biś, An analogue of the Variational Principle for group and pseudogroup actions, to appear in Annales de l'Institut Fourier.
- [BK] M. Brin, A. Katok, *On local entropy*, in Geometric Dynamics, Lecture Notes in Math., Vol. 1007, Springer, Berlin (1983), 30-38.

- [GLW] E. Ghys, R. Langevin and P. Walczak, Entropie géométrique des feuilletages, Acta Math. 160 (1988), 105 142.
- [MW] Ji-Hua Ma, Zhi-Ying Wen, A Billingsley type theorem for Bowen entropy, C. R. Acad. Sci. Paris, Ser I **346** (2008), 503-507.
- [Pes] Ya. Pesin, Dimension Theory in Dynamical Systems, Chicago Lectures in Mathematics, The University of Chicago Press, Chicago, 1997.
- [Pes2] Ya. Pesin, Dimension Type Characteristics for Invariant Sets of Dynamical Systems, Russian Math. Surveys, 43, (1988), 111-151.
- [PePi] Ya. Pesin, B.S. Pitskel, Topological pressure and the variational principle for noncompact sets, Functional Anal. and its Appl. 18 (1984), 307-318.

Andrzej Biś Department of Mathematics and Computer Science University of Lodz ul. Banacha 22 90-238 Lodz Poland

andbis@math.uni.lodz.pl