Primeness, Primitivity and Radicals in Near-rings of Continuous Functions

Geoff Booth Nelson Mandela Metropolitan University Email: geoff.booth@nmmu.ac.za

1 Preliminaries

Definition 1.1 A near-ring is a triple $(N, +, \cdot)$, where

- 1. (N, +) is a group;
- 2. (N, \cdot) is a semigroup;
- 3. (x+y)z = xz + yz for all $x, y, z \in N$.

In the sequel we will speak of "the near-ring N", rather than "the near-ring $(N,+,\cdot)$ " and of xy, rather than $x\cdot y$. If x0=0 for all $x\in N$, then N is said to be zero-symmetric. All near-rings discussed here will be zero-symmetric.

Homomorphisms, epimorphisms and isomorphisms are defined as they are for rings. Ideals of a near-ring N are the kernels of homomorphic mappings of N. The notation $A \triangleleft N$ means "A is an ideal of N". A subnear-ring of N is a subset S of N which is a near-ring with respect to the operations on N.

Definition 1.2 Let (G, +) be a (not necessarily abelian) group, and let $M_0(G) := \{a : G \to G \mid a(0) = 0\}$. Then $M_0(G)$ is a zero-symmetric nearring with the operations pointwise addition and composition of functions.

We remark that for any group G, $M_0(G)$ is *simple*, i.e. it has only the two trivial ideals.

Definition 1.3 Let (G, +) be a topological group, and let $N_0(G) := \{a : G \to G \mid a \text{ is continuous and } a(0) = 0\}$. Then $N_0(G)$ is a zero-symmetric near-ring with the operations pointwise addition and composition of functions.

In the sequel, G will be a T_0 (and hence completely regular) topological group.

Remarks 1.4

- 1. Clearly, $N_0(G)$ is a subnear-ring of $M_0(G)$. If the topology on G is discrete, then $N_0(G) = M_0(G)$.
- 2. While $M_0(G)$ is simple for any group G, $N_0(G)$ seldom is, if G is not discrete. For example, let P :=

 $\{a \in N_0(G) \mid a(U) = 0 \text{ for some open set } U \text{ such that } 0 \in U\}.$ Then P is frequently a non-trivial ideal of $N_0(G)$.

For all undefined concepts concerning near-rings, we refer to Pilz [9]. For further information on near-rings of continuous functions, we refer to the surveys by Magill [7], [8].

2 Primeness

Definition 2.1 A near-ring N is

- 1. 0-semiprime if $A \triangleleft N$, $A^2 = 0$ implies A = 0;
- 2. 0-prime if $A, B \triangleleft N$, AB = 0 implies A = 0 or B = 0;
- 3. 3-semiprime if $a \in N$, aNa = 0 implies a = 0;
- 4. 3-prime if $a, b \in N$, aNb = 0 implies a = 0 or b = 0;
- 5. equiprime (e-prime) if $a, x, y \in N$, anx = any for all $n \in N$ implies a = 0 or x = y.

The relationships between the above concepts are equiprime \Longrightarrow 3-prime \Longrightarrow 0-prime \Longrightarrow 0-semiprime and 3-prime \Longrightarrow 3-semiprime \Longrightarrow 0-semiprime. Equiprimeness is of particular interest from the radical-theoretic viewpoint in that it leads to the only known Kurosh-Amitsur prime radical in the varieties of both zero-symmetric and general near-rings [4].

Proposition 2.2 [5] Let G be a topological group which is 0-dimensional or arcwise connected. Then $N_0(G)$ is equiprime.

Since the discrete topology is 0-dimensional, this implies that $M_0(G)$ is equiprime. This need not be the case for $N_0(G)$ in general, as the following example shows.

Example 2.3 Let $G = \mathbb{R} \times \mathbb{Z}_2$ have the product topology with respect to the usual and discrete topologies on \mathbb{R} and \mathbb{Z}_2 , respectively. Let I :=

 $\{a \in N_0(G) \mid a(G) \subseteq \mathbb{R} \times 0\}$ and $J := \{a \in N_0(G) \mid a(\mathbb{R} \times 0) = 0\}$. Then $I, J \triangleleft N_0(G)$ and $I \cap J \neq 0$. Moreover, $(I \cap J)^2 = 0$, so $N_0(G)$ is not 0-semiprime.

3 Primitivity

A number of notions of primitivity exist in the literature of near-rings, which can be defined in terms of left N-modules, which are defined in a natural way (cf [9]). We recall that the *annihilator* of an N-module G is the set $(0:G) = \{x \in N \mid xG = 0\}$. G is said to be *faithful* if (0:G) = 0.

Definition 3.1 A left N-module of a near-ring N is said to be:

- 1. of type 2 if $NG \neq 0$ and Ng = 0 or Ng = G, for all $g \in G$.
- 2. of type 3 if N is of type 2 and $g_1, g_2 \in G, ng_1 = ng_2$ for all $n \in N$ implies $g_1 = g_2$ (cf Holcombe [6]).

Definition 3.2 A near-ring N is ν -primitive ($\nu = 2,3$) if there exists a faithful left N-module of type ν .

We remark that 2-primitive \Rightarrow 0-prime, and 3-primitive \Rightarrow equiprime. In general the notions of 2-primitive and equiprime are not comparable [4]. However, in the case that N has a unity, the notions of 2-primitive and 3-primitive coincide.

Proposition 3.3 [3] Suppose that G is arcwise connected or 0-dimensional. Then $N_0(G)$ is 3-primitive on G.

4 Radicals

Definition 4.1 Let N be a near-ring and let $I \triangleleft N$. Then

- 1. I is a ν -prime ideal of N ($\nu = 0, 3, e$) if the factor near-ring N/I is ν -prime;
- 2. the ν -prime radical of N, $\mathcal{P}_{\nu}(N)$, is the intersection of the ν -prime ideals of N.

Definition 4.2 Let N be a near-ring and let $I \triangleleft N$. Then

- 1. I is a ν -primitive ideal of N ($\nu = 2, 3$) if the factor near-ring N/I is ν -primitive;
- 2. the ν -Jacobson radical of N, $\mathcal{J}_{\nu}(N)$, is the intersection of the ν -primitive ideals of N.

The radicals \mathcal{P}_e , \mathcal{J}_2 and \mathcal{J}_3 are known to be Kurosh-Amitsur in the variety of zero-symmetric near-rings [4], [6]. The following inclusion relations exist: $\mathcal{P}_0 \subseteq \mathcal{P}_3 \subseteq \mathcal{P}_e \subseteq \mathcal{J}_3$ The radicals \mathcal{P}_e and \mathcal{J}_2 are not comparable.

Proposition 4.3 [1] Let G be a disconnected topological group, with open components which are arcwise connected and which contain more than one element. Let H be the component of G which contains $0, I := \{a \in N_0(G) \mid a(G) \subseteq H\}$ and $J := \{a \in N_0(G) \mid a(H) = 0\}$. Then $\mathcal{P}_0(N_0(G)) = \mathcal{J}_3(N_0(G)) = I \cap J$.

We remark that, because of the inclusion relations among the radicals which we have discussed above, Proposition 4.3 implies that they all coincide in this case.

5 Sandwich Near-rings

Definition 5.1 Let X and G be a topological space and a topological group respectively, and let $\theta: G \longrightarrow X$ be a continuous map. The sandwich nearring $N_0(G, X, \theta)$ is the set $\{a: X \longrightarrow G \mid a \text{ is continuous and } a\theta(0) = 0\}$. Addition is pointwise and multiplication is defined by $a \cdot b := a\theta b$. In the sequel, $\theta(0)$ will be denoted x_0 . If the topologies on X and G are discrete we denote the near-ring by $M_0(G, X, \theta)$.

In this section we will assume that both G and X have more than one element.

Proposition 5.2 [5] Suppose that X is a 0-dimensional. Then $N_0(G, X, \theta)$ is equiprime if and only if θ is injective and $cl(\theta(G)) = G$, where $cl(\theta(G))$ denotes the closure of $\theta(G)$ in X.

Proposition 5.3 [1], [3] Let $N_0(G, X, \theta)$ be a sandwich near-ring such that $\theta^{-1}\theta(0) = \{0\}$ and either (1) X is a T_0 , 0-dimensional topological space or (2) X is completely regular and G is arcwise connected. Then the following are equivalent:

- 1. $\operatorname{cl}(\theta(G)) = X$.
- 2. $N_0(G, X, \theta)$ is 3-semiprime.
- 3. $N_0(G, X, \theta)$ is 3-prime.
- 4. $N_0(G, X, \theta)$ is 2-primitive (and is 2-primitive on G in this case).

Proposition 5.4 [1], [3] Let X and G be a completely regular topological space and an arcwise connected topological group, respectively, and let θ : $G \to X$ be a continuous, injective map. Then the following are equivalent:

- 1. $\operatorname{cl}(\theta(G)) = X$.
- 2. $N_0(G, X, \theta)$ is 3-semiprime.
- 3. $N_0(G, X, \theta)$ is equiprime.
- 4. $N_0(G, X, \theta)$ is 3-primitive.

Proposition 5.5 [1], [3] Let $N_0(G, X, \theta)$ be a sandwich near-ring, where $\theta^{-1}\theta(0) = \{0\}$ and either (1) X is T_0 and 0-dimensional or (2) X is completely regular and G is arcwise connected. Then $\mathcal{P}_0(N_0(G, X, \theta)) = \mathcal{J}_2(N_0(G, X, \theta)) = (0 : G) = \{a \in N_0(G, X, \theta) : a\theta = 0\}.$

We remark that, in view of the inclusion relations that exist among the radicals, $\mathcal{P}_0(N_0(G, X, \theta)) = \mathcal{J}_2(N_0(G, X, \theta))$ in this case.

Proposition 5.5 [1], [3] Let $N_0(G, X, \theta)$ be a sandwich near-ring, where θ is injective and either (1) X is T_0 and 0-dimensional or (2) X is completely regular and G is arcwise connected. Then $\mathcal{P}_0(N_0(G, X, \theta)) = \mathcal{J}_3(N_0(G, X, \theta)) = (0 : G) = \{a \in N_0(G, X, \theta) : a\theta = 0\}.$

The inclusion relations among the radicals imply that all the radicals which have been discussed will coincide in this case.

References

- [1] G.L. Booth: Primeness in near-rings of continuous functions 2, Beiträge Alg. Geom. 46 (2005), No. 1, 207-214.
- [2] G.L. Booth: Prime radicals in sandwich near-rings, *Acta Math. Hungar*. 131 (2011), Nos. 1-2, 25-34.

- [3] G.L.Booth: Primitivity in near-rings of continuous functions, *Topology* and its App., in press.
- [4] G.L. Booth, N.J. Groenewald and S. Veldsman: A Kurosh-Amitsur prime radical for near-rings, *Comm. in Algebra* 18 (1990), No. 9, 3111-3122.
- [5] G.L. Booth and P.R. Hall: Primeness in near-rings of continuous functions, *Beiträge Alg. Geom.* 45 (2004), No. 1, 21-27.
- [6] M. Holcombe: A hereditary radical for near-rings, Studia Sci. Math. Hungar. 17 (1982), Nos. 453-456.
- [7] K.D. Magill: Near-rings of continuous self-maps: a brief survey and some open problems, *Proc. Conf. San Bernadetto del Tronto*, 1981, 25-47, 1982.
- [8] K.D. Magill: A survey of topological nearrings and nearrings of continuous functions, *Proc. Tenn. Top. Conf.*, World Scientific Pub. Co., Singapore, 1997, 121-140.
- [9] G. Pilz: Near-rings, 2nd ed., North-Holland, Amsterdam, 1983.