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The isoperimetric problem

Queen Dido’s problem: Minimize the length

among all embedded curves in the plane with

a given enclosed area.

Generalize this to higher dimensions: Minimize

the area of an embedded hypersurface in Rn

among all surfaces that enclose a given vol-

ume V .

Theorem. Round spheres are optimal for the

isoperimetric problem. More precisely, if Ω is a

domain in Rn satisfying vol(Ω) = vol(B), then

|∂Ω| ≥ |∂B|.

Symmetrization techniques show that if a min-

imizer exists it must be a sphere. Existence of

a minimizer is a non-trivial issue. A rigorous

proof (based on Brunn-Minkowski inequality)

was found in the 20th century.



The first variation of surface area

Study the isoperimetric problem using the Cal-

culus of Variations developed by Bernoulli, Eu-

ler, and others.

Consider a domain Ω ⊂ Rn with smooth bound-

ary. Let X be a smooth vector field, and let

Ωt = ϕt(Ω), where ϕt is the flow generated by

X. Then
d

dt
vol(Ωt)
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∣

∣

∣

t=0
=

∫

∂Ω
〈X, ν〉

and
d

dt
|∂Ωt|

∣

∣

∣

∣

t=0
=

∫

∂Ω
H 〈X, ν〉.

Here, H is the mean curvature of the surface

∂Ω (can be viewed as an L2 gradient of the

area functional). Note that H = λ1+. . .+λn−1
where the λi’s are the principal curvatures of

∂Ω (i.e. the reciprocals of the curvature radii).

Surfaces with H = 0 are minimal surfaces (soap

films). The catenoid in R3 is the simplest ex-

ample.



Surfaces with constant mean curvature in

Euclidean space

Proposition. Suppose that the first variation

of area is zero for variations that leave the

enclosed volume unchanged. Then the mean

curvature of ∂Ω is constant: H = c.

The constant c can be viewed as a Lagrange

multiplier.

Problem: Analyze hypersurfaces in Rn with

constant mean curvature.

Theorem (Alexandrov 1956). Let Σ be a hy-

persurface in Rn which has constant mean cur-

vature and is embedded (i.e. no self-intersections).

Then Σ is a round sphere.

Wente, Kapouleas: There exist non-trivial ex-

amples of constant mean curvature surfaces,

but these fail to be embedded.



The proof of Alexandrov’s theorem is based

on the method of moving planes: Reflect Σ

across a hyperplane P . Move the hyperplane P

until the reflected surface touches the original

surface Σ. The reflected surface must coincide

with the original surface by the strict maximum

principle.



Surfaces with constant mean curvature in

Riemannian manifolds

Replace the ambient space Rn by a curved Rie-

mannian manifold. This question is motivated

in part by questions in relativity:

• Christodoulou, Yau (1986): Let Σ ≈ S2

be a stable surface of constant mean cur-

vature in a 3-manifold (M, g) with positive

scalar curvature. Then Σ has nonnegative

Hawking mass.

• Huisken, Yau (1996): Let (M, g) be an

asymptotically flat 3-manifold which has

positive mass (i.e. (M, g) looks Euclidean

near infinity). Then (M, g) admits a folia-

tion by constant mean curvature surfaces

near infinity. Under mild extra assump-

tions, this foliation is unique.



• Qing-Tian, Eichmair-Metzger: Optimal unique-

ness theorem for large surfaces of constant

mean curvature.

• Rigger: Similar results hold when (M, g) is

asymptotic to hyperbolic space near infin-

ity. (This corresponds to a universe with

negative cosmological constant.)



The Schwarzschild manifold

Recall: The Schwarzschild spacetime describes

a static black hole in general relativity.

The Schwarzschild manifold is defined as a

{t = constant} slice in the Schwarzschild space-

time. The resulting manifold is M = {x ∈ Rn :

|x| ≥ 1}, and the metric is given by

g = (1 + |x|2−n)
4

n−2 (dx2
1 + . . . + dx2

n).

Note that (M, g) is asymptotic to Euclidean

space near infinity. The boundary ∂M = {x ∈
Rn : |x| = 1} is a minimal surface and is re-

ferred to as the horizon.



A version of Alexandrov’s Theorem for the

Schwarzschild manifold

Goal: Classify all surfaces of constant mean

curvature in the Schwarzschild manifold (not

just the ones near infinity).

Theorem (B. 2011). Let Σ be a closed, em-

bedded, orientable surface in the Schwarzschild

manifold with constant mean curvature. Then

Σ is a sphere of symmetry, i.e. Σ = {|x| = r}
for some constant r.

No assumptions on the topology of Σ or the di-

mension are needed. No stability assumptions

are required.



Sketch of proof

Main difficulty: Method of moving planes no

longer works!

New approach: Let M = {x ∈ Rn : |x| ≥ 1} and

g = (1 + |x|2−n)
4

n−2 (dx2
1 + . . . + dx2

n).

Consider the static potential

f =
1 − |x|2−n

1 + |x|2−n

and the position vector field

X =
n

∑

i=1

xi
∂

∂xi
.

Note that the (n + 1)-dimensional Lorentzian

metric −f2 dt2+g solves the Einstein vacuum

equations! Moreover, DiXj = f gij, so X is

conformal.



The main theorem is a consequence of the fol-

lowing proposition:

Proposition. Let Σ be a closed, embedded,

orientable hypersurface with positive mean cur-

vature. Then

(n − 1)
∫

Σ
f dµ =

∫

Σ
H 〈X, ν〉 dµ

and

(n − 1)
∫

Σ

f

H
dµ ≥

∫

Σ
〈X, ν〉 dµ.

Moreover, if equality holds then Σ is a sphere

of symmetry.

The first statement follows from the diver-

gence theorem. The second statement is re-

lated to a classical inequality of Heintze-Karcher.

To prove it, we distinguish two cases:

Case 1: Σ is null-homologous.

Case 2: Σ is homologous to the horizon ∂M .

We will focus here on Case 2, which is the

more difficult one.



A geometric evolution equation

We claim:

(n − 1)
∫

Σ

f

H
dµ ≥ n

∫

Ω
f + A(n).

Here, Ω is the region bounded by Σ and the

horizon ∂M . A(n) is a positive constant which

reflects the contribution of the horizon.

Idea of proof: Deform the surface Σ with

speed −f ν, where ν is the outward pointing

unit normal. This gives a one-parameter family

of surfaces Σt, t ≥ 0.

The evolution of the mean curvature is de-

scribed by the equation

∂H

∂t
= ∆Σf + f

∑

i

λ2
i + f Ric(ν, ν),

where the λi’s are the principal curvatures.



Key observation: Since the Lorentzian metric

−f2 dt2 + g satisfies Einstein’s equation, the

potential f satisfies

(∆f) g − D2f + f Ric = 0.

Hence, the evolution of the mean curvature

becomes

∂H

∂t
= ∆Σf + f

∑

i

λ2
i + f Ric(ν, ν)

= ∆f − (D2f)(ν, ν) + f Ric(ν, ν)

− H 〈∇f, ν〉 + f
∑

i

λ2
i

≥ −H 〈∇f, ν〉 +
1

n − 1
f H2.

This allows us to show that the quantity

Q(t) = (n − 1)
∫

Σt

f

H
dµ − n

∫

Ωt

f

is monotone decreasing!



We next analyze the limit of Q(t) as t → ∞:

For t large, Σt is close to the horizon, and we

obtain

lim sup
t→∞

∫

Σt

f

H
dµ ≥ A(n).

Consequently,

(n − 1)
∫

Σ

f

H
dµ − n

∫

Ω
f

= Q(0) ≥ lim sup
t→∞

Q(t) ≥ A(n),

completing the proof of the Theorem.

Concluding remarks:

• The surfaces Σt sweep out a lightlike hy-

persurface in the Schwarzschild spacetime

(i.e. the surfaces Σt move with the speed

of light).

• The surfaces Σt may not be smooth (due

to focal points). To overcome this prob-

lem, approximate Σt by smooth surfaces.



Constant mean curvature surfaces in warped

product manifolds

Goal: Extend the previous analysis to more

general spaces with rotational symmetry.

Consider a metric of the form g = dr2+h(r)2 gSn−1.

Assume that the warping function h : [0, r̄) → R

satisfies the following structure conditions:

(H1) h′(0) = 0 and h′′(0) > 0.

(H2) h′(r) > 0.

(H3) The scalar curvature of g is monotone de-

creasing in r.

Theorem (B. 2011). Let (M, g) be a rotation-

ally symmetric manifold satisfying conditions

(H1)–(H3). Moreover, let Σ be a closed, em-

bedded, orientable hypersurface in (M, g) with

constant mean curvature. Then Σ is umbilic.



This theorem applies, inter alia, to Euclidean

space, hyperbolic space, the hemisphere, and

the Schwarzschild manifold. The result also

applies to the DeSitter-Schwarzschild and Anti-

DeSitter-Schwarzschild manifolds (non-zero cos-

mological constant).

Conversely, Alexandrov’s theorem fails if the

scalar curvature is not monotone in r:

Theorem (F. Pacard, X. Xu).Let g be a smooth

metric on the ball Br̄(0) ⊂ Rn which is rotation-

ally symmetric. Assume that the scalar cur-

vature of g has a strict local extremum some-

where in Br̄(0). Then there exist small spheres

with constant mean curvature which are not

umbilic.

Therefore, our result is essentially optimal.



Minimal surfaces in the sphere S3

We will now discuss a different (though re-

lated) problem:

Consider the three-dimensional unit sphere in

R4:

S3 = {(x1, x2, x3, x4) ∈ R
4 : x2

1+x2
2+x2

3+x2
4 = 1}.

Note: While there are no closed minimal sur-

faces in R3, the topology of S3 allows closed

minimal surfaces. Examples of minimal sur-

faces in S3:

• The equator {(x1, x2, x3, x4) ∈ R4 :

x2
1 + x2

2 + x2
3 + x2

4 = 1, x4 = 0}.

• The Clifford torus {(x1, x2, x3, x4) ∈ R4 :

x2
1 + x2

2 = x2
3 + x2

4 = 1
2}.



Examples of minimal surfaces in S3:

• H.B. Lawson, Jr. (1970): Given any pos-

itive integer g, there exists an embedded

minimal surface in S3 with genus g.

• Karcher, Pinkall, and Sterling (1988): Ex-

amples of embedded minimal surfaces in

S3 with genus 3, 5, 6, 7, 11, 19, 73, and

601.

• Further examples constructed recently by

Kapouleas-Yang (doubling construction).

Moreover, Lawson has constructed an infinite

family of immersed minimal tori in S3. These

surfaces have self-intersections.



The Lawson Conjecture

Motivation: Minimal S2’s in S3 are unique.

Theorem (Almgren 1966). Let Σ ≈ S2 be an

immersed minimal surface in S3. Then Σ is

congruent to the equator.

It turns out that minimal tori in S3 are unique

as well:

Theorem (B. 2012). The Clifford torus is the

only embedded minimal torus in S3.

This answers a question posed by H.B. Law-

son, Jr., in 1970.

Proof of Lawson’s conjecture involves an appli-

cation of the maximum principle to a function

which depends on a pair of points.



Proof of Lawson’s conjecture (sketch)

Let F : Σ → S3 be an embedded minimal torus

and let ν : Σ → S3 denote the unit normal

vector field. We claim that F parametrizes the

Clifford torus. Since F is minimal, the sum of

the principal curvatures is 0 at each point. If

both principal curvatures vanish at x, we say

that x is an umbilic point.

Key idea: A minimal torus in S3 has no umbilic

points. Consequently, the ratio

Q(x, y) =
√

2
〈ν(x), F (y)〉

|A(x)| (1 − 〈F (x), F (y)〉)
is finite!

Consider a pair of points (x̄, ȳ) where Q(x, y) is

maximal. At the point (x̄, ȳ), the first deriva-

tives of Q vanish, and the second derivatives

form a negative definite matrix.



Proof of Lawson’s conjecture (continued)

An intricate calculation shows that Q(x̄, ȳ) ≤ 1.

Thus, Q(x, y) ≤ 1 for all points x, y ∈ Σ. An

analogous argument gives Q(x, y) ≥ −1 for all

points x, y ∈ Σ.

On the other hand, if the gradient of the curva-

ture is non-zero, we can arrange that |Q(x, y)| >

1 where x, y are very close to each other. Since

|Q(x, y)| ≤ 1 for all points x, y ∈ Σ, the curva-

ture must be constant. This implies that Σ is

the Clifford torus.


