
ON EXPANSIONS OF DIFFERENTIAL OPERATORS IN BANACH SPACES

V.P. Burskii, Donetsk, Ukraine, e-mail:v30@dn.farlep.net

It is well-known that the usual theory of partial differential oper-
ators expansions (Vishik, Hörmander, Berezansky, Dezin) or that is
equivalently, the general theory of boundary value problems has been
building in the Hilbert space L2(Ω). In this report a starting scheme
of theory building for expansions in Banach spaces will be brought
and first results of the theory will be obtained.

In a bounded domain Ω ⊂ Rn we consider expansions of opera-
tor (initially given in the space C∞(Ω)) L+ =

∑
|α|≤l

aα(x)D
α, Dα =

(−i∂)|α|

∂xα and its formal adjoint operator L+· =
∑
|α|≤l

Dα(a∗α(x) ·),

where aα(x)− N ×N+-matrix with entries (aα)ij ∈ C∞(Ω̄), a∗α(x)−
adjoint matrix.

For p > 1 and q = p/(p− 1) we introduce graph norms ∥u∥L,p =
∥u∥Lp(Ω) + ∥Lu∥Lp(Ω), ∥u∥L,q, ∥u∥L+,p, ∥u∥L+,q. Then we build min-
imal operators Lp0, Lq0, L

+
p0 and L+

q0 with its domains that are un-
derstood as the closing C∞

0 (Ω) in corresponding graph norms and
maximal operators Lp := (L+

q0)
∗, Lq := (L+

p0)
∗, L+

p , L
+
q . Each op-

erator LpB = Lp|D(LpB) with property D(Lp0) ⊂ D(LpB) ⊂ D(Lp)
is called an expansion (of Lp0), and the expansion LpB : D(LpB) →
[Lp(Ω)]

N+

=: B+
p is called solvable if there exists its continuous

twosided inverse operator L−1
pB : B+

p → D(LpB),

LpBL
−1
pB =idB+

p
, L−1

pBLpB =idD(LpB).

Here as usually one introduces the notion of boundary value prob-
lem in the form Lpu = f, Γu ∈ B, where subspace B in bound-
ary space C(Lp) =: D(Lp)/D(Lp0) (Γ : D(Lp) → C(Lp)− factor-
mapping) gives a homogenous boundary value problem similar the
Hörmander definition. Two Vishik condition of Hipbert case turn
to four condition in Banach case: operator Lp0 has continuous left
inverse (condition (1p)) and the same about operators Lq0 (condition
(1q)), L

+
p0 (condition (1+p )) and L+

q0 (condition (1+q )). Then we prove
the theorems:

Theorem 1. The operator Lp0 has a solvable expansion iff the
conditions (1p) and (1+q ) are fulfilled.

Theorem 2. Under conditions (1p), (1
+
p ) we have decomposition

D(Lp) = D(Lp0)⊕ kerLp⊕Wp, where Wp− some subspace in D(Lp)
such that Lp|Wp

: Wp → kerL+
p − an isomorphism.

Theorem 3. Under conditions (1p), (1
+
p ) any solvable expansion

LpB can be decomposed into direct sum LpB = Lp0 ⊕ L∂
pB, where



L∂
pB : B → kerL−1

p0 − some isomorphism.
Theorem 4. Under conditions (1p), (1

+
p ) any linear subspace

B ⊂ C(Lp) such that 1) Γ−1
p B ∩ kerLp = 0, 2) there exists operator

Mp : kerL
−1
p0 → D(Lp) with properties: ) LpMp =id|kerL−1

p 0
, ) ImMp ⊂

Γ−1
p B, generates a well-posed boundary value problem (i.e. a solvable

expansion LpB with domain D(LpB) = Γ−1B).
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