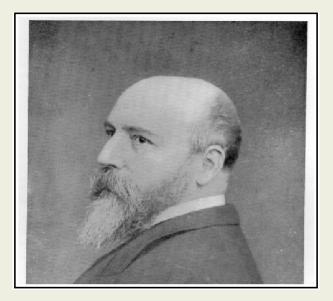
# Luigi Cremona (1830 – 1903)



# — I —

# **Basic Features**

- $\mathbf{k} = a$  field.
- $\mathbb{A}^n_{\mathbf{k}}$  = affine space of dimension *n*.
- Cr<sub>n</sub>(k) = Cremona group in n variables :
  group of birational transformations of A<sup>n</sup><sub>k</sub>

$$Cr_n(\mathbf{k}) = Bir(\mathbb{A}^n_{\mathbf{k}})$$

•  $\mathbb{P}^n_{\mathbf{k}}$  = projective space of dimension *n*.

$$\operatorname{Cr}_n(\mathbf{k}) = \operatorname{Bir}(\mathbb{P}^n_{\mathbf{k}})$$

# The Cremona group in 1 variable

(日) (同) (三) (三)

∃ 900

• Easy fact .—

$$Cr_1(\mathbf{k}) = PGL_2(\mathbf{k}).$$

• For 
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{k})$$

$$X \in \mathbb{A}^{1}_{\mathbf{k}} \quad \mapsto \quad \frac{aX+b}{cX+d},$$
$$[x:y] \in \mathbb{P}^{1}_{\mathbf{k}} \quad \mapsto \quad [ax+by:cx+dy]$$

#### — From Now on —

*n* = 2

#### Two variables : Examples

- Linear projective transformations = PGL<sub>3</sub>(**k**)
- Monomial transformations  $(X, Y) \mapsto (X^a Y^b, X^c Y^d)$  with

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathsf{GL}_2(\mathbf{Z}).$$

There are **indeterminacy points** (like Y/X at the origin).

•  $f: (X, Y) \mapsto (X + P(Y), Y)$  with  $P \in \mathbf{k}(Y)$ .

The group  $Cr_2(\mathbf{k})$  is infinite dimensional.

Theorem [Lukakikh ; Kollàr and Mangolte].—

The group of birational transformations of  $\mathbb{P}^2_{\mathbf{R}}$  with no real indeterminacy points is dense in  $\text{Diff}^{\infty}(\mathbb{P}^2(\mathbf{R}))$ .

In particular, there are birational transformations of  $\mathbb{P}^2_{\mathbf{R}}$  with rich dynamics.

### - II -

# Normal Subgroups and

# **Tits Alternative**

Theorem [Herman, Thurston, Mather].—

- *M* = smooth, connected, and compact manifold.
- $\operatorname{Diff}^{k}(M) = \operatorname{group} \operatorname{of} \operatorname{diffeomorphisms} \operatorname{of} \operatorname{class} \mathcal{C}^{k}$ .
- $\operatorname{Diff}_{0}^{k}(M) = \text{connected component containing } Id_{M}$ .

If  $k \neq \dim(M) + 1$ , then  $\operatorname{Diff}_0^k(M)$  is a simple group.

**Theorem** [with Stéphane Lamy].— Let  $\mathbf{k}$  be an algebraically closed field. The Cremona group  $Cr_2(\mathbf{k})$  is not simple.

**Theorem** [Dahmani, Guirardel, Osin].— Let  $\mathbf{k}$  be an algebraically closed field. The Cremona group  $\operatorname{Cr}_2(\mathbf{k})$  is subquotient universal: Every countable group embeds in a quotient of  $\operatorname{Cr}_2(\mathbf{k})$ .

**Theorem** — The Cremona group  $Cr_2(\mathbf{k})$  satisfies Tits alternative: If  $\Gamma$  is a finitely generated subgroup of  $Cr_2(\mathbf{k})$ , then  $\Gamma$  contains a free non abelian subgroup or a finite index solvable subgroup.

- Tits alternative is satisfied in GL<sub>n</sub>(**k**);
- Tits alternative is **not** satisfied in Diff<sup>∞</sup>(S<sup>1</sup>).

#### **Open Problem:**

Does  $Cr_n(\mathbf{C})$  satisfy Tits alternative for  $n \geq 3$ ?

### — III —

# **Degree Growth and Geometry**

• For  $f \in Cr_2(\mathbf{k})$ , the asymptotic degree is

$$\lambda(f) := \lim_{n \to +\infty} (\deg(f^n)^{1/n}).$$

If  $\lambda(f) > 1$ , it is a Salem or Pisot number.

- $h(X, Y) = (Y + X^3, X)$ ,  $\deg(h^n) = 3^n$ , and  $\lambda(h) = 3$ .
- $g(X,Y) = (X^2Y,XY), \ \lambda(g) = (3+\sqrt{5})/2.$
- $f(X, Y) = (X + 1, XY), \deg(f^n) = n + 1$  because

$$f^n(X,Y) = (X+n,X(X+1)\cdots(X+n-1)Y)$$

**Theorem** [Gizatullin, C., Diller-Favre].— Let f be an element of  $Cr_2(\mathbf{k})$ . If  $\lambda(f) = 1$  then one of the following is satisfied

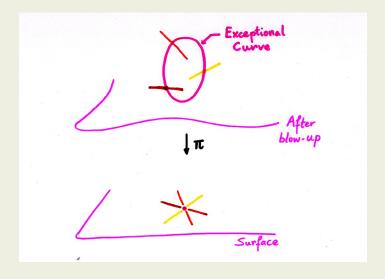
- deg(f<sup>n</sup>) is bounded, and there exists m > 0 such that f<sup>m</sup> is conjugate to an element of PGL<sub>3</sub>(k);
- deg(f<sup>n</sup>) ~ c<sup>ste</sup>n, and f preserves a pencil of rational curves (De Jonquières twists);
- deg(f<sup>n</sup>) ~ c<sup>ste</sup>n<sup>2</sup>, and f preserves a pencil of curves of genus 1 (Halphen twists).

#### -IV -

# Blow-ups and infinite dimensional Hyperbolic space

◆□> <□> <□> <=> <=> <=> <=> <=> <</p>

# Blow-up of a point q



• Second homology group

$$H_2(\mathbb{P}^2(\mathbf{C}), \mathbf{Z}) = \mathbf{Z} \, \mathbf{e}_0$$

where

$$\mathbf{e}_0 = \mathsf{class} \text{ of a line } H \simeq \mathbb{P}^1(\mathbf{C}) \subset \mathbb{P}^2(\mathbf{C}).$$

• Blow-up a point  $p_1$ : a new curve  $E_1 \simeq \mathbb{P}^1(\mathbf{C})$  appears.

 $H_2(X_1, Z) = Z \, \mathbf{e}_0 \oplus Z \, \mathbf{e}_1, \text{ with } \mathbf{e}_0^2 = 1, \mathbf{e}_0 \cdot \mathbf{e}_1 = 0, \mathbf{e}_1^2 = -1$ 

• Blow-up n points  $p_i$ , we get

$$H_2(X_n, \mathbf{Z}) = \mathbf{Z} \, \mathbf{e}_0 \oplus \mathbf{Z} \, \mathbf{e}_1 \oplus \ldots \oplus \mathbf{Z} \, \mathbf{e}_n$$

with intersection form of signature (1, n).

• Blow-up all points successively

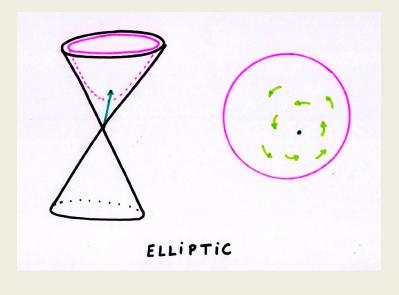
 $\mathcal{Z}$  = injective limit of (co)homology groups  $H_2(X_i, \mathbf{Z})$ .

The intersection form has signature  $(1,\infty)$ .

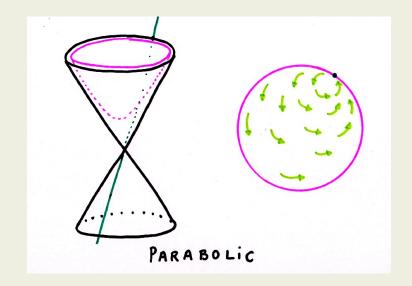
**Fact** [Yuri Manin's Remark].— The Cremona group  $Cr_2(C)$  acts faithfully by isometries on Z.

- Hyperbolic space  $\mathbb{H}^{\infty}$ :
  - $\mathbb{H}_0^\infty = \{ u \in \mathcal{Z} \otimes \mathbf{R} \, | \, u^2 = 1 \text{ and } u \cdot \mathbf{e}_0 > 0 \}$
  - metric :  $\cosh(\operatorname{dist}(u, v)) = u \cdot v$
  - complete ℍ<sup>∞</sup><sub>0</sub> with respect to this metric to get ℍ<sup>∞</sup>.

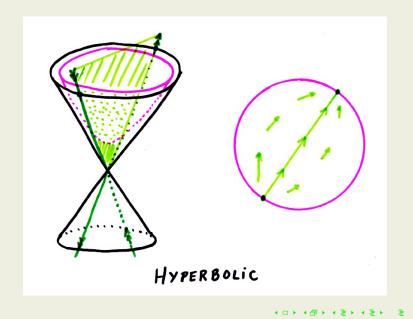
# Elliptic Isometries = Bounded degrees



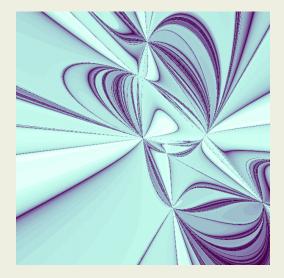
# Parabolic Isometries = Halphen and De Jonquières Twists



# Loxodromic Isometries = Chaotic Dynamics = $\lambda(f) > 1$



# Loxodromic Isometries = Chaotic Dynamics = $\lambda(f) > 1$



(picture by C. McMullen)

DAG

# Complex dynamics

•  $h: (X, Y) \mapsto (Y + X^3 + c, aX)$ 



 $c=0.52+0.46\sqrt{-1}$ 

< n