Luigi Cremona (1830 - 1903)

- I -

Basic Features

Cremona group in n variables

- $\mathbf{k}=$ a field.
- $\mathbb{A}_{\mathbf{k}}^{n}=$ affine space of dimension n.
- $\quad \mathrm{Cr}_{n}(\mathbf{k})=$ Cremona group in n variables:
$=$ group of birational transformations of $\mathbb{A}_{\mathbf{k}}^{n}$

$$
\operatorname{Cr}_{n}(\mathbf{k})=\operatorname{Bir}\left(\mathbb{A}_{\mathbf{k}}^{n}\right)
$$

- $\mathbb{P}_{\mathbf{k}}^{n}=$ projective space of dimension n.

$$
\operatorname{Cr}_{n}(\mathbf{k})=\operatorname{Bir}\left(\mathbb{P}_{\mathbf{k}}^{n}\right)
$$

The Cremona group in 1 variable

- Easy fact .-

$$
\mathrm{Cr}_{1}(\mathbf{k})=\mathrm{PGL}_{2}(\mathbf{k}) .
$$

- For $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{GL}_{2}(\mathbf{k})$

$$
\begin{aligned}
X \in \mathbb{A}_{\mathbf{k}}^{1} & \mapsto \frac{a X+b}{c X+d} \\
{[x: y] \in \mathbb{P}_{\mathbf{k}}^{1} } & \mapsto[a x+b y: c x+d y] .
\end{aligned}
$$

- From Now on -

$$
n=2
$$

Two variables: Examples

- Linear projective transformations $=\mathrm{PGL}_{3}(\mathbf{k})$
- Monomial transformations $(X, Y) \mapsto\left(X^{a} Y^{b}, X^{c} Y^{d}\right)$ with

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{Z})
$$

There are indeterminacy points (like Y / X at the origin).

- $\quad f:(X, Y) \mapsto(X+P(Y), Y)$ with $P \in \mathbf{k}(Y)$.

The group $\mathrm{Cr}_{2}(\mathbf{k})$ is infinite dimensional.

Density in groups of diffeomorphisms

Theorem [Lukakikh ; Kollàr and Mangolte].-
The group of birational transformations of $\mathbb{P}_{\mathbf{R}}^{2}$ with no real indeterminacy points is dense in Diff ${ }^{\infty}\left(\mathbb{P}^{2}(\mathbf{R})\right)$.
In particular, there are birational transformations of $\mathbb{P}_{\mathbf{R}}^{2}$ with rich dynamics.

- II -

Normal Subgroups and

Tits Alternative

Normal subgroups: diffeomorphisms

Theorem [Herman, Thurston, Mather].-

- $M=$ smooth, connected, and compact manifold.
- $\operatorname{Diff}^{k}(M)=$ group of diffeomorphisms of class \mathcal{C}^{k}.
- $\operatorname{Diff}_{0}^{k}(M)=$ connected component containing $/ d_{M}$.

If $k \neq \operatorname{dim}(M)+1$, then $\operatorname{Diff}_{0}^{k}(M)$ is a simple group.

Normal subgroups: Enriques conjecture (1894)

Theorem [with Stéphane Lamy]. - Let \mathbf{k} be an algebraically closed field.
The Cremona group $\mathrm{Cr}_{2}(\mathbf{k})$ is not simple.

Theorem [Dahmani, Guirardel, Osin].- Let \mathbf{k} be an algebraically closed field. The Cremona group $\mathrm{Cr}_{2}(\mathbf{k})$ is subquotient universal: Every countable group embeds in a quotient of $\mathrm{Cr}_{2}(\mathbf{k})$.

Tits Alternative

Theorem .- The Cremona group $\mathrm{Cr}_{2}(\mathbf{k})$ satisfies Tits alternative: If Γ is a finitely generated subgroup of $\mathrm{Cr}_{2}(\mathbf{k})$, then Γ contains a free non abelian subgroup or a finite index solvable subgroup.

- Tits alternative is satisfied in $G L_{n}(\mathbf{k})$;
- Tits alternative is not satisfied in $\operatorname{Diff}^{\infty}\left(\mathbb{S}^{1}\right)$.

Open Problem:

Does $\mathrm{Cr}_{n}(\mathbf{C})$ satisfy Tits alternative for $n \geq 3$?

— III -

Degree Growth and Geometry

Degree Growth

- For $f \in \mathrm{Cr}_{2}(\mathbf{k})$, the asymptotic degree is

$$
\lambda(f):=\lim _{n \rightarrow+\infty}\left(\operatorname{deg}\left(f^{n}\right)^{1 / n}\right)
$$

If $\lambda(f)>1$, it is a Salem or Pisot number.

- $\quad h(X, Y)=\left(Y+X^{3}, X\right), \operatorname{deg}\left(h^{n}\right)=3^{n}$, and $\lambda(h)=3$.
- $g(X, Y)=\left(X^{2} Y, X Y\right), \lambda(g)=(3+\sqrt{5}) / 2$.
- $f(X, Y)=(X+1, X Y), \operatorname{deg}\left(f^{n}\right)=n+1$ because

$$
f^{n}(X, Y)=(X+n, X(X+1) \cdots(X+n-1) Y)
$$

Classification

Theorem [Gizatullin, C., Diller-Favre].- Let f be an element of $\mathrm{Cr}_{2}(\mathbf{k})$. If $\lambda(f)=1$ then one of the following is satisfied

- $\operatorname{deg}\left(f^{n}\right)$ is bounded, and there exists $m>0$ such that f^{m} is conjugate to an element of $\mathrm{PGL}_{3}(\mathbf{k})$;
- $\operatorname{deg}\left(f^{n}\right) \simeq c^{s t e} n$, and f preserves a pencil of rational curves (De Jonquières twists);
- $\operatorname{deg}\left(f^{n}\right) \simeq c^{\text {ste }} n^{2}$, and f preserves a pencil of curves of genus 1 (Halphen twists).

- IV -

> Blow-ups
> and
> infinite dimensional Hyperbolic space

Blowing-up points

- Second homology group

$$
H_{2}\left(\mathbb{P}^{2}(\mathbf{C}), \mathbf{Z}\right)=\mathbf{Z} \mathbf{e}_{0}
$$

where

$$
\mathbf{e}_{0}=\text { class of a line } H \simeq \mathbb{P}^{1}(\mathbf{C}) \subset \mathbb{P}^{2}(\mathbf{C}) .
$$

- Blow-up a point p_{1} : a new curve $E_{1} \simeq \mathbb{P}^{1}(\mathbf{C})$ appears.

$$
H_{2}\left(X_{1}, \mathbf{Z}\right)=\mathbf{Z} \mathbf{e}_{0} \oplus \mathbf{Z} \mathbf{e}_{1}, \text { with } \mathbf{e}_{0}^{2}=1, \mathbf{e}_{0} \cdot \mathbf{e}_{1}=0, \mathbf{e}_{1}^{2}=-1
$$

- Blow-up n points p_{i}, we get

$$
H_{2}\left(X_{n}, \mathbf{Z}\right)=\mathbf{Z} \mathbf{e}_{0} \oplus \mathbf{Z} \mathbf{e}_{1} \oplus \ldots \oplus \mathbf{Z} \mathbf{e}_{n}
$$

with intersection form of signature $(1, n)$.

Inductive Limit and Hyperbolic Space

- Blow-up all points successively
$\mathcal{Z}=$ injective limit of (co) homology groups $H_{2}\left(X_{i}, \mathbf{Z}\right)$.
The intersection form has signature $(1, \infty)$.
Fact [Yuri Manin's Remark].- The Cremona group $\mathrm{Cr}_{2}(\mathbf{C})$ acts faithfully by isometries on \mathcal{Z}.
- Hyperbolic space \mathbb{H}^{∞} :
- $\mathbb{H}_{0}^{\infty}=\left\{u \in \mathcal{Z} \otimes \mathbf{R} \mid u^{2}=1\right.$ and $\left.u \cdot \mathbf{e}_{0}>0\right\}$
- metric : $\cosh (\operatorname{dist}(u, v))=u \cdot v$
- complete \mathbb{H}_{0}^{∞} with respect to this metric to get \mathbb{H}^{∞}.

Elliptic Isometries $=$ Bounded degrees

Elliptic

Parabolic Isometries $=$ Halphen and De Jonquières Twists

Parabolic

Loxodromic Isometries $=$ Chaotic Dynamics $=\lambda(f)>1$

Loxodromic Isometries $=$ Chaotic Dynamics $=\lambda(f)>1$

(picture by C. McMullen)

Complex dynamics

- $\quad h:(X, Y) \mapsto\left(Y+X^{3}+c, a X\right)$

