Variational Models for Exemplar-Based Inpainting

Vicent Caselles

6th European Congress of Mathematics Kraków July 2-7, 2012

Universitat Pompeu Fabra, Barcelona

Coauthors:

- P. Arias, V.C., G. Facciolo, Analysis of a Variational Model for Exemplar-Based Image Inpainting. SIAM MMS 2011.
- P. Arias, V.C., G. Facciolo, G. Sapiro, A Variational Framework for Exemplar-Based Image Inpainting. EMMCVPR 2009 and IJCV 2011.
- A. Hervieu, N. Papadakis, A. Bugeau, P. Gargallo, V. C. Stereoscopic Image Inpainting Using Scene Geometry. IEEE ICME, 2011.
- Y. Liu, V. C., Exemplar-based Image Inpainting using Multiscale Graph Cuts. Preprint 2012.
- G. Facciolo, R. Sadek, A. Bugeau, and V. C. Temporally consistent gradient domain video editing. EMMCVPR 2011.
- R. Sadek, G. Facciolo, P.Arias, and V. C. Temporally consistent gradient domain video editing. Preprint, 2012.

A couple of examples:

• An illustrative example of (more automatic) image inpainting.

- A simple example in a realistic context.
- Our purpose is to explain them

A simple example in a realistic context: take out a plackard on a door.

• Original sequence.

• Inpainted sequence.

Plan

- **Problem statement**. Geometry and Texture (Exemplar-Based) Methods.
- Basic idea: self-similarity and its variational formulation.
- Energies for Exemplar-Based Inpainting: Fuzzy correspondences.
- Energies for Exemplar-Based Inpainting: The Copy/Paste case.
- The structure of the correspondence (copying) map.
- Algorithm. PatchMatch: An algorithm for fast search of patches.
- Algorithm. Graph cut
- Experiments.
- Other Applications: Stereo Inpainting. Video.

Inpainting: Problem statement

Definitions:

- image: $u: \Omega \to \mathbb{R}$
- $\bullet\,$ image domain: Ω
- inpainting domain: O
- known data: $O^c = \Omega \setminus O$
- Patch domain: Ω_p
- Patch of u centered at x: $p_u(x)$

Inpainting: Problem statement

Definitions:

- image: $u: \Omega \to \mathbb{R}$
- $\bullet\,$ image domain: Ω
- inpainting domain: O
- known data: $O^c = \Omega \setminus O$
- Patch domain: Ω_p
- Patch of u centered at x: $p_u(x)$

Objective:

- Visually plausible completion
- Using only the data in O^c , or in a database

Local inpainting methods

Local Methods:

• Continuation of level lines or gradients. Variational methods or PDE Based (initiated by S. Masnou and J.M. Morel).

Local inpainting methods

Local Methods:

• Continuation of level lines or gradients. Variational methods or PDE Based (initiated by S. Masnou and J.M. Morel).

• Good results on **smooth** images, fails on **textured** images.

Local inpainting methods

Figure: Courtesy of Simon Masnou

Non-Local or Exemplar-Based Methods:

• Triggered by works on texture-synthesis [Efros'99, Wei'00, Bonard'02].

Figure: From Efros-Leung paper

Non-Local or Exemplar-Based Methods:

- Triggered by works on texture-synthesis [Efros'99, Wei'00, Bonard'02].
- Underlying assumption: image self-similarity.
- Image Patches as basic units of information.
- A very powerful method.
- Also in . . .
 - denoising: non-local means, UINTA [Buades-Coll-Morel 05, Awate-Withaker 06].
 - superresolution [Protter'09].
 - inspired a lot of work on variational denoising and restoration [Kinderman-Osher-Jones'06, Gilboa-Osher'06, Peyré'09].

Basic idea: self-similarity and its variational formulation.

Idea: Maximize the self-similarity

Correspondence map: $\varphi: O \rightarrow O^c$ [Demanet'03]

Image synthesis: $u|_O(x) = u(\varphi(x))$

Energy: (Synthesized) Patch around x is similar to Patch around $\varphi(x)$

$$E(\varphi) = \int_O \int_{\Omega_p} |u|_O(x+y) - u(\varphi(x)+y)|^2 \mathrm{d}y \mathrm{d}x$$

• Iteration of [Efros'99] scheme [Demanet'03]

Image and mapping joint minimization [Wexler'07][Peyré'08][Arias'09][Kawai'09]

Basic idea: self-similarity and its variational formulation.

Idea: Maximize the self-similarity

Correspondence map: $\varphi: O \rightarrow O^c$ [Demanet'03]

Image synthesis: $u|_O(x) = u(\varphi(x))$

Energy: (Synthesized) Patch around x is similar to Patch around $\varphi(x)$

$$E(\varphi) = \int_O \int_{\Omega_P} |u(\varphi(x+y)) - u(\varphi(x)+y)|^2 \mathrm{d}y \mathrm{d}x$$

• Iteration of [Efros'99] scheme [Demanet'03]

Image and mapping joint minimization [Wexler'07][Peyré'08][Arias'09][Kawai'09]

 $u_0(x)$ given (noisy) image

$$u_0(x) = u(x) + n(x),$$

where n(x) is a white Gaussian noise. **w(x,x')=** weight expressing the **similarity** of x and x'. Example

$$w(x, x') \propto \exp\left(-\frac{1}{T} \|p_{u_0}(x) - p_{u_0}(x')\|^2\right) \quad T > 0.$$

The Non-Local Means formula is [Buades-Coll-Morel'06]

$$u = NLM(u_0) := \int_{\Omega} w(x, x')u_0(x') \, dx'.$$

w(x, x')

A non-local energy.

Let E_w the **coherence** energy [Gilboa-Osher'06].

$$E_w(\mathbf{u}) = \int_{\Omega} \int_{\Omega} w(x, x') (\mathbf{u}(\mathbf{x}) - u(x'))^2 \mathrm{d}x' \mathrm{d}x$$

We are assuming that weights are fixed. They penalize pixel errors:

minimizing the energy $\implies u(x') \approx u(x)$ when w(x, x') is large.

A non-local energy.

Let E_w the **coherence** energy [Gilboa-Osher'06].

$$E_w(\mathbf{u}) = \int_{\Omega} \int_{\Omega} w(x, x') (\mathbf{u}(\mathbf{x}) - u(x'))^2 \mathrm{d}x' \mathrm{d}x$$

The Euler-Lagrange equation:

$$\frac{\partial E_w}{\partial u} = 0 \quad \Longleftrightarrow \quad u(x) = \int_{\Omega} w(x, x') u(x') \mathrm{d}x'$$

w(x, x')

15 / 58

 $x \in \Omega$

A non-local energy.

Let E_w the **coherence** energy [Gilboa-Osher'06].

$$E_w(\boldsymbol{u}) = \int_{\Omega} \int_{\Omega} w(x, x') (\boldsymbol{u}(\boldsymbol{x}) - u(x'))^2 \mathrm{d}x' \mathrm{d}x$$

$$u^{k+1}(x) = \int_{\Omega} w(x, x') u^k(x') \mathrm{d}x' \qquad x \in \Omega.$$

The iteration k = 0 gives NLM.

Energies for Exemplar-Based Inpainting

Energy for (w, u) (Gibbs free energy)

Consider $w: \widetilde{O} \times \widetilde{O}^c \to \mathbb{R}^+$ as a variable, $T \ge 0$:

$$\mathcal{E}_{T}(u,w) = \underbrace{\int_{\widetilde{O}} \int_{\widetilde{O}^{c}} w(x,x') \|p_{u}(x) - p_{u}(x')\|^{2} \mathrm{d}x' \mathrm{d}x}_{\text{image energy}}$$
subject to
$$\int_{\widetilde{O}^{c}} w(x,x') \mathrm{d}x' = 1.$$

Energy for (w, u) (Gibbs free energy)

Consider $w: \widetilde{O} \times \widetilde{O}^c \to \mathbb{R}^+$ as a variable, $T \ge 0$:

$$\mathcal{E}_{T}(u,w) = \underbrace{\int_{\widetilde{O}} \int_{\widetilde{O}^{c}} w(x,x') \|p_{u}(x) - p_{u}(x')\|^{2} \mathrm{d}x' \mathrm{d}x}_{\text{image energy}}$$
subject to
$$\int_{\widetilde{O}^{c}} w(x,x') \mathrm{d}x' = 1.$$

- We compare patches
- We transfer information from O^c to O
- Weights are unknown: are computed

Energy for (w, u) (Gibbs free energy)

Consider $w: \widetilde{O} \times \widetilde{O}^c \to \mathbb{R}^+$ as a variable, $T \ge 0$:

$$\mathcal{E}_{T}(u,w) = \underbrace{\int_{\widetilde{O}} \int_{\widetilde{O}^{c}} w(x,x') \|p_{u}(x) - p_{u}(x')\|^{2} \mathrm{d}x' \mathrm{d}x}_{\text{image energy}} - \underbrace{T}_{\substack{\widetilde{O} \\ \text{entropy}}} \underbrace{\int_{\widetilde{O}^{c}} H(w(x,\cdot)) \mathrm{d}x}_{\text{entropy}}$$
subject to $\int_{\widetilde{O}^{c}} w(x,x') \mathrm{d}x' = 1.$

Entropy of
$$w(x, \cdot)$$
: $H(w(x, \cdot)) = -\int_{\widetilde{O}^c} w(x, x') \log w(x, x') dx'$
$$\frac{\partial \mathcal{E}_T}{\partial w} = 0 \iff w(x, x') = \frac{1}{q(x)} \exp\left(-\frac{1}{h} \|p_u(x) - p_u(x')\|^2\right)$$

Probabilistic correspondences may be necessary

A sparsely sampled image

Energies for Exemplar-Based Inpainting

Generalization:

$$\mathcal{E}_T(u,w) = \int_{\widetilde{O}} \int_{\widetilde{O}^c} w(x,x') U(x,x') \mathrm{d}x' \mathrm{d}x - T\mathcal{H}(w)$$

- Patch NL-means : $U(x, x') = ||p_u(x) p_u(x')||_2^2$
- Patch NL-medians : $U(x, x') = ||p_u(x) p_u(x')||_1$
- Patch NL-Poisson :

$$U(x, x') = \|p_{\nabla u}(x) - p_{\nabla u}(x')\|_{2}^{2}$$

• Patch NL-Gradient Medians :

$$U(x, x') = ||p_{\nabla u}(x) - p_{\nabla u}(x')||_1$$

Energies for Exemplar-Based Inpainting

Generalization:

$$\mathcal{E}_T(u,w) = \int_{\widetilde{O}} \int_{\widetilde{O}^c} w(x,x') U(x,x') \mathrm{d}x' \mathrm{d}x - T\mathcal{H}(w)$$

- Patch NL-means : $U(x, x') = ||p_u(x) p_u(x')||_2^2$
- Patch NL-medians : $U(x, x') = ||p_u(x) p_u(x')||_1$
- Patch NL-Poisson : $\lambda \in [0, 1]$

$$U(x, x') = (1 - \lambda) \|p_{\nabla u}(x) - p_{\nabla u}(x')\|_2^2 + \lambda \|p_u(x) - p_u(x')\|_2^2$$

• Patch NL-Gradient Medians : $\lambda \in [0, 1]$

$$U(x, x') = (1 - \lambda) \|p_{\nabla u}(x) - p_{\nabla u}(x')\|_1 + \lambda \|p_u(x) - p_u(x')\|_2^2$$

Summary: four inpainting schemes

Patch NL-GM (L^1 grad comparison)

For Patch-NLM:

$$U(x, x') = \|p_u(x) - p_u(x')\|^2 = g * (u(x + \cdot) - u(x' + \cdot))^2.$$

For Patch NL-Poisson:

$$U(x, x') = \|p_{\nabla u}(x) - p_{\nabla u}(x')\|^2 = g * (\nabla u(x + \cdot) - \nabla u(x' + \cdot))^2.$$

Proposition

If $\nabla g \in L^1$ and $u \in BV(O^c)$, there are minima (u, w) of the Patch-NLM energy. For any minimum: $u \in W^{1,\infty}(O)$, $w \in W^{1,\infty}(\widetilde{O} \times \widetilde{O}^c)$.

For the NL-Poisson energy: If $\nabla g \in L^{\infty}$ and $u \in W^{2,2}(O^c)$, then $u \in W^{1,p}(O)$ for any $p < \infty$, $w \in W^{1,\infty}(\widetilde{O} \times \widetilde{O}^c)$.

Similar results hold when using L^1 norm.

Limit case $T \rightarrow 0$

As $T \rightarrow 0$, the energy \mathcal{E}_T Gamma converges to

$$\mathcal{E}_0(u,\nu) := \int_{\widetilde{O}} \int_{\widetilde{O}^c} U(x,x') d\nu(x,x'),$$

where $x \rightarrow \nu(x, \cdot)$ is a measurable probability-valued map (indeed a Young measure).

Proposition There are minima (u, ν) of \mathcal{E}_0 . There are minima (u, ν) such that ν is given by a correspondence map, i.e. there is a measurable map $\varphi: \widetilde{O} \to \widetilde{O}^c$ such that

$$\varphi(x) \in \underset{x' \in \widetilde{O}^c}{\arg\min} U(x, x'),$$

$$\nu(x, x') = \nu^{\varphi}(x, x') = \delta(x' - \varphi(x)).$$

Correspondence case: The Proposition is a consequence of Kuratowski-Ryll-Nardewski Theorem. Or: since the extremal points of the set of Young measures are the $\{\nu^{\varphi}: \varphi\}$. For correspondences the energy can be written as

$$\mathcal{E}_0(u,\varphi) = \int_O \int_{\Omega_p} |u|_O(x+y) - u(\varphi(x)+y)|^2 \mathrm{d}y \mathrm{d}x.$$

The two unknowns are $u|_O$ and φ and one can proceed by iterated optimization.

Algorithm: Iterated optimization algorithm:

Initialization: choose u^0 as the average of u on \widetilde{O}^c). For each $k \in \mathbb{N}$ solve

$$\nu^{k} = \underset{\nu}{\operatorname{arg\,min}} \mathcal{E}_{0}(u^{k}, \nu),$$
$$u^{k+1} = \underset{\nu}{\operatorname{arg\,min}} \mathcal{E}_{0}(u, \nu^{k})$$

11

 $\cdot x_2$ • x

 $\varphi(x_2)$

• x'

 $\dot{\varphi(x_1)}$

For the case of patch NL-means: We observe that if $\varphi(x)$ is fixed and $u|_O = \arg\min_u \mathcal{E}_0(u,\varphi)$, then

$$u|_O(x) = \sum_{\Omega_p} g(y)u(\varphi(x-y)+y)$$

When φ is a translation, *i.e.* $\varphi(x) = x + t$:

$$u|_O(x) = u(\varphi(x))$$

Analogous for NL-Poisson case.

 $\cdot x_2$

 $\bullet x$ $\cdot x_1$

 $\varphi(x_2)$

• x

 $\dot{\varphi(x_1)}$

Experimental evidence for Piece-wise translation φ $\varphi(x) = x + t(x)$, with t piece-wise constant.

Correspondence case: Structure of the solution

Experimental evidence for Piece-wise translation φ $\varphi(x) = x + t(x)$, with t piece-wise constant.

- *L*¹: Sharp transitions (between intensity/gradients)
- L^2 : Smooth blending by averaging (of intensity/gradients)

Emergence of copy regions

Emergence of copy regions thoughout the 34 iterations
Emergence of copy regions

Emergence of copy regions thoughout the iterations

Empirical observation: φ often results in a piece-wise traslation.

Result obtained with a multiscale scheme.

Theorem (Extension of KRN)

- $X \subset \mathbb{R}^N$ open bounded with Lipschitz boundary, $Y \subset \mathbb{R}^m$ compact.
- $U: X \times Y \to \mathbb{R}$ be a Lipschitz continuous function. Let

$$x\in X\to M(x):=\{y\in Y: U(x,y)=\min_{\bar{y}\in Y}U(x,\bar{y})\}.$$

Then there exists a selection of the multifunction $x \in X \to M(x) \subseteq Y$, i.e., a function $\varphi : X \to Y$ such that $\varphi(x) \in M(x)$ for all $x \in X$, which is a uniform limit of functions with finitely many values in $BV(X)^m$.

Thus \mathcal{H}^{N-1} -a.e. $x \in X$ is either a point of approximate continuity of φ , or a jump point with two (lateral limits) limits. Its jump set J_{φ} is a countably rectifiable set.

Experiments

Experiments

Experiments

Results with non-variational scheme

Departure from variational model:

- 1. Synthesize image using $\lambda_u \ll 1$.
- 2. Compute weights using λ_w . Parameter to be set for each image.

Greater flexibility, but it is not variational.

An example with symmetries

We generate symmetric versions of the image

An example with symmetries

We generate symmetric versions of the image

An example of reconstruction of a sparsely sampled image

Reconstruction of a sparsely sampled image (Annealing)

An example of reconstruction of a sparsely sampled image

Reconstruction of a sparsely sampled image (Annealing)

An example of reconstruction of a sparsely sampled image

Reconstruction of a sparsely sampled image (Annealing)

A different algorithmic perspective: using graph cuts

Reformulation of Efros-Leung-Demanet-Chan energy.

$$E(\varphi) = \sum_{O} \sum_{\Omega_p} |u(\varphi(x+y)) - u(\varphi(x)+y)|^2$$

Let $\varphi(x) = x + m(x)$ where $m : \Omega \to \mathbb{Z}^2$ represents the offset map.

$$E(m) = \sum_{q \in O} \sum_{y \in N_p} |u(q + m(q)) - u(q + m(q - y))|$$

$$+\sum_{q\in\partial O}\sum_{y\in\Omega_p}|u(q+y)-u(q+m(q)+y)|^2$$

Minimization using graph cuts. (Y. Liu, V.C.)

 $\bullet \varphi(x)$

Using Efros model based on pixels

Figure: Using Komodakis-Tziritas

- Further analysis of the "copy regions"
 - There are better regularity properties for φ ?
 - Should we enforce them? (as in [Demanet'03,Aujol'08])
 - Can we prove that the algorithm produce piecewise regular solutions ?

- Depth consistency in both images (good depth perception)
- Reconstruction of the depth of dis-occluded objects.

- Depth consistency in both images (good depth perception)
- Reconstruction of the depth of dis-occluded objects.

- Depth consistency in both images (good depth perception)
- Reconstruction of the depth of dis-occluded objects.

- Depth consistency in both images (good depth perception)
- Reconstruction of the depth of dis-occluded objects.

Stereo Image Inpainting: another example

Stereo Image Inpainting: another example

Stereo Image Inpainting: another example

Ingredients:

- Depth computation (assuming cameras are calibrated)
- Consistent selection of the inpainting regions
- Depth inpainting
- **Simultaneous inpainting** of both images: incorporate depth consistency into the inpainting energy

Ingredients:

- Depth computation (assuming cameras are calibrated)
- Consistent selection of the inpainting regions
- Depth inpainting: region models
- Simultaneous inpainting of both images I_1, I_2 : incorporate depth consistency into the inpainting energy

$$\sum_{x \in O} \|p_{I_1}(x) - p_{I_1}(\varphi(x))\|_{g,2}^2 + \|p_{I_2}(x + d(x)) - p_{I_2}(\varphi(x) + d(\varphi(x)))\|_{g,2}^2.$$

Let v be the optical flow. We insert an object in a video: in O (a space-time domain). We forward it by minimizing

$$E_{\lambda}(u) = \int_{O} \left(\frac{1}{2} \| \nabla_{x} \partial_{v} u(x,t) \|^{2} + \frac{\lambda}{p} \| \nabla_{x} u(x,t) \|^{p} \right) \, \mathrm{d}x \, \mathrm{d}t,$$

with $\lambda \ge 0$, p = 1, 2.

We denoted $\partial_v = \partial_t + v \nabla_x$.

We assume (as in DiPerna-Lions)

$$v \in L^{1}(0, T; W^{1,1}_{\text{loc}}(\mathbb{R}^{2}; \mathbb{R}^{2})) \cap L^{1}(0, T; L^{\infty}(\mathbb{R}^{2}; \mathbb{R}^{2})),$$
(1)
$$\operatorname{div} v \in L^{1}(0, T; L^{\infty}(\mathbb{R}^{2})).$$
(2)

(For existence if $\lambda = 0$, for uniqueness).

Object insertion in video sequences

Explanation:

$$\nabla_x \partial_v u(x,t) = 0.$$
(3)

Our variational model is based on this equation. A Taylor expansion of (3) leads to

$$u(y_0 + kv(y_0, t), t + k) - u(x_0 + kv(x_0, t), t + k)$$

$$\approx u(y_0, t) - u(x_0, t), \quad (4)$$

Object insertion in video sequences

Object insertion in video sequences

Object insertion in video sequences

Boundary conditions for the one-lid setting.

If we insert an object in the first frame: we choose the set of boundary conditions

$$u(x,0) = u_0(x,0), \qquad x \in O_0, \qquad (5)$$

$$u(x,t) = u_0(x,t), \qquad (x,t) \in \partial O_{\text{vert}}, \qquad (6)$$

$$\partial_v u(x,t) = g_0(x,t) , \qquad (x,t) \in \partial O_{\text{tang}} \setminus \partial \Omega^T, \qquad (7)$$

$$u(x,t) = u_0(x,t) , \qquad (x,t) \in \partial O_{\text{obli}} \setminus \partial \Omega^T, \qquad (8)$$

The boundary conditions on the rest of ∂O are

$$\nabla_{x}^{*}(\kappa \nabla_{x} \partial_{v} u)(x,t) = 0, \qquad x \in O_{T}, \qquad (9)$$

$$\lambda \xi \cdot \nu^{O_{t}}(x,t) = 0, \qquad (x,t) \in \partial O_{tang} \cap \partial \Omega^{T}, \qquad (10)$$

$$\nabla_{x}^{*}(\kappa \nabla_{x} \partial_{v} u)(x,t) + \lambda \xi \cdot \nu^{O_{t}}(x,t) = 0, \qquad (x,t) \in \partial O_{obli} \cap \partial \Omega^{T}. \qquad (11)$$

$$\nabla_{x}^{*}(\lambda \nabla_{x} \partial_{v} u(x,t) \cdot \nu^{O_{t}}(x,t) = 0, \qquad (x,t) \in \partial O_{obli} \cap \partial \Omega^{T}. \qquad (11)$$

 $\kappa = 1$

Boundary conditions for the two-lid setting. They are given by (5),(6),(7),(8),(10),(11), and (9) is replaced by

$$u(x,T) = u_0(x,T)$$
 in O_T . (12)

Thank you