On locally soluble AFM-groups

Olga Dashkova

odashkova@yandex.ru

Dnepropetrovsk national university, Ukraine

Abstract

Let A be a vector space over a field F. The group GL(F,A) of all automorphisms of A and its subgroups are called linear groups. If A has finite dimension over F then every element of GL(F,A) defines a nonsingular $(n \times n)$ -matrix over F, where $n = \dim_F A$. The theory of finite dimensional linear groups is one of the best developed in Algebra. In the case when $\dim_F A$ is infinite, the situation is rather different. Study of infinite dimensional linear groups requires some additional restrictions. One from these restrictions is a finitarity of linear groups. We recall that a linear group G is called a finitary if for each element $G \in G$ the subspace G has finite codimension [1–2]. The theory of finitary linear groups has been developed very intensivly and have became very rich with many interesting results [2].

In [3] the authors have considered antifinitary linear groups. Let $G \leq GL(F,A)$, A(wFG) be an augmentation ideal of a group ring FG. The augmentation dimension of G is the F-dimension of A(wFG). A linear group G is an antifinitary linear group if each proper subgroup of G having infinite augmentation dimension is finitely generated.

If $G \leq GL(F,A)$ then A can be considered as an FG-module. The generalization of this case is consideration of $\mathbf{R}G$ -module where \mathbf{R} is a ring. B.A.F. Wehrfritz has considered an artinian-finitary group of automorphisms of a module M over a ring \mathbf{R} and a noetherian-finitary group of automorphisms of a module M over a ring \mathbf{R} wich are the analogues of finitary linear groups [4–6]. The group of automorphisms $F_1Aut_{\mathbf{R}}M$ of a module M over a ring \mathbf{R} is called artinian-finitary if for each element $g \in F_1Aut_{\mathbf{R}}M$ A(g-1) is an artinian \mathbf{R} -module. The group of automorphisms $FAut_{\mathbf{R}}M$ of a module M over a ring \mathbf{R} is called noetherian-finitary if for each element $g \in FAut_{\mathbf{R}}M$ A(g-1) is a noetherian \mathbf{R} -module.

We need the definition of a cocentralizer of a subgroup H in the module A [7].

Definition 1. Let A be an $\mathbf{R}G$ -module where \mathbf{R} is a ring, G is a group. If $H \leq G$ then the quotient–module $A/C_A(H)$ considered as an \mathbf{R} -module is called a cocentralizer of a subgroup H in the module A.

The generalization of classes of artinian and noetherian modules is the class of minimax modules [8].

Definition 2. An \mathbf{R} -module A is called a minimax \mathbf{R} -module if A has finite series of submodules such that each factor is either a noetherian \mathbf{R} -module or an artinian \mathbf{R} -module.

We consider the analogy of antifinitary linear groups in the theory of modules over group rings. Let A be an $\mathbf{R}G$ -module. A group G is called AFM-group if each proper subgroup $H \leq G$ such that its cocentralizer in the module A is not a minimax \mathbf{R} -module is finitely generated.

Let MD(G) be a set of all elements $x \in G$ such that the cocentralizer of a group $\langle x \rangle$ in the module A is a minimax \mathbf{R} -module. MD(G) is a normal subgroup of a group G.

We consider AFM-groups such that $\mathbf{R}=\mathbb{Z}$ is a ring of integers and $C_G(A)=1$. The main results are the theorems.

Theorem 1. Let A be a $\mathbb{Z}G$ -module. If the cocentralizer of a group G in the module A is a minimax \mathbb{Z} -module then G is soluble.

Theorem 2. Let A be a $\mathbb{Z}G$ -module, G is a locally soluble AFM-group. Then a group G is hyperabelian.

Theorem 3. Let A be a $\mathbb{Z}G$ -module, G is a finitely generated soluble AFM-group. If the cocentralizer of a group G in the module A is not a minimax \mathbb{Z} -module then the following conditions hold:

- (1) the cocentralizer of a subgroup $M\bar{D(G)}$ in the module A is a minimax \mathbb{Z} -module;
- (2) a group G has a normal subgroup U such that the quotient group G/U is polycyclic.

BIBLIOGRAPHY

- [1] $Phillips\ R.E.$ The structure of groups of finitary transformations. J. Algebra., 119, no. 2 (1988), 400–448.
- [2] *Phillips R.E.* Finitary linear groups: a survey. "Finite and locally finite groups". NATO ASI ser. C Math. Phys. Sci., Kluver Acad. Publ., Dordreht, 471 (1995), 111–146.
- [3] Kurdachenko L.A., Muñoz-Escolano J.M., Otal J. Antifinitary linear groups. Forum Math., **20**, no. 1 (2008), 27–44.
- [4] Wehrfritz B.A.F. Artinian-finitary groups over commutative rings. Illinois J. Math., 47, no. 1–2 (2003), 551–565.
- [5] Wehrfritz B.A.F. Artinian-finitary groups are locally normal-finitary. J. Algebra, 287, no. 2 (2005), 417–431.
- [6] Wehrfritz B.A.F. Artinian-finitary groups over commutative rings and non-commutative rings. J. Lond. Math. Soc.(2), **70**, no. 2 (2004), 325–340.
- [7] $Kurdachenko\ L.A.$ On groups with minimax classes of conjugate elements. Infinite groups and adjoined algebraic systems. Kyev: National Academy of Sciences of Ukraine, Institute of Mathematics. 1993. 160–177.
- [8] Kurdachenko L.A., Subbotin I.Ya., Semko N.N. Insight into Modules over Dedekind Domains. Kyev: National Academy of Sciences of Ukraine, Institute of Mathematics. 2008. 119 p.

AMS Classification: 20F19.