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The Euler and Navier-Stokes equations

They describe the motion of an incompressible fluid under some
assumptions.
The unknowns are the pressure (a scalar field) and the velocity.

∂tv + div (v ⊗ v) +∇p = ν∆v
div v = 0

ν > 0 Navier Stokes
ν = 0 Euler

The i-th component of the advective term div (v ⊗ v) is given by∑
j

∂xj (vjvi) .

Camillo De Lellis (UZH) Dissipative solutions of the Euler equations July 5th, 2012 2 / 30



The Euler and Navier-Stokes equations

They describe the motion of an incompressible fluid under some
assumptions.
The unknowns are the pressure (a scalar field) and the velocity.

∂tv + div (v ⊗ v) +∇p = ν∆v
div v = 0

ν > 0 Navier Stokes
ν = 0 Euler

The i-th component of the advective term div (v ⊗ v) is given by∑
j

∂xj (vjvi) .

Camillo De Lellis (UZH) Dissipative solutions of the Euler equations July 5th, 2012 2 / 30



The Euler and Navier-Stokes equations

They describe the motion of an incompressible fluid under some
assumptions.
The unknowns are the pressure (a scalar field) and the velocity.

∂tv + div (v ⊗ v) +∇p = ν∆v
div v = 0

ν > 0 Navier Stokes
ν = 0 Euler

The i-th component of the advective term div (v ⊗ v) is given by∑
j

∂xj (vjvi) .

Camillo De Lellis (UZH) Dissipative solutions of the Euler equations July 5th, 2012 2 / 30



The Euler and Navier-Stokes equations II

In this talk we will consider solutions which are defined on the entire
3-dimensional (resp. 2-dimensional) space and over some time
interval I.
In several occasions we will consider periodic solutions and thus the
domain of definition will be T3 × I (or T2 × I).
I might be

I a bounded interval or a half line; in this case the left endpoint will
be 0 and the equations will be complemented with an initial
condition (Cauchy problem):

v(0, ·) = v0

I the entire real line (ancient solutions)
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The Euler and Navier-Stokes equations III

The Euler equations were derived more than 250 years ago (by Euler!)
The Navier-Stokes equations date back to the middle of the 19th
century.

Nonetheless several fundamental and outstanding open questions are
still open: the most famous one is the blow-up problem for
3-dimensional solutions of the Cauchy problem.

This talk WILL NOT touch that issue.
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The conservation of energy

If (v ,p) is a C1 solution, we can scalar multiply the first equation by v :

∂t
|v |2

2
+ div

((
|v |2

2
+ p

)
v
)

= ν

(
∆
|v |2

2
− |Dv |2

)
(NB: C1 obviously enough for ν = 0 (Euler). Less obvious when ν > 0:
use for instance the regularity theory for Navier-Stokes.)

Integrate in space (and by parts!) to derive the dissipation law for the
kinetic energy:

d
dt

∫
|v |2(x , t) dx = −ν

∫
|Dv |2(x , t) dx (1)

ν = 0: classical solutions of Euler preserve the total kinetic energy.
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Weak solutions of the Euler equations

Three possible definitions of generalized solutions:

1: use the theory of distributions to define derivatives. Assume square
summability of v (v ∈ L2) to safely define v ⊗ v .

2: use Fourier series (periodic setting) in space and reduce the PDE to
an (infinite-dimensional) system of ODEs for the Fourier coefficients.
The minimal assumption to give a meaning: v(t , ·) ∈ L2 (with some
uniformity in t).

3: take the "point of view of continuum physics" and use conservation
laws on any "fluid element Ω":
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Weak solutions II

Balance of mass: the flux fluid leaving/entering Ω through ∂Ω is 0.

v
ν

Ω

Conclusion:
∫
∂Ω

v · ν = 0

Balancing the momentum:
d
dt

∫
Ω

v =

∫
∂Ω

v(v · ν) +

∫
∂Ω

pν

These integral identities make sense if, for instance (v ,p) ∈ C.
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The Scheffer-Shnirelman nonuniqueness

All these notions are equivalent and from now on: weak = generalized.

Theorem (Scheffer 1993)

There are compactly supported nonzero weak solutions in L2(R2 × R).

A different proof in the periodic setting given by Shnirelman in 1998.

Obviously these solutions do not preserve the total kinetic energy.

Theorem (Shnirelman 2000)
There are weak solutions in 3-space dimension with total kinetic
energy which is strictly decreasing.
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Bounded "bad" weak solutions

Theorem (D-Székelyhidi 2007)
There are compactly supported nontrivial bounded weak solutions in
any space dimension.

D-S 2009: There are weak a solutions which “behave in all possible
ways” in terms of local/global energy conservation. None of the criteria
proposed so far in the literature restores uniqueness of weak solutions
to the Cauchy problem if the initial data are discontinuous.

Székelyhidi 2011: this remains true even for fairly mild discontinuities.

Similar conclusions hold for other equations of fluid dynamics, where
analogous methods can be used: Cordoba-Faraco-Gancedo,
Shvidkoy, Wiedemann, Chiodaroli, ...
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Differential inclusions

Our 2007 paper plunged Scheffer’s nonuniqueness Theorem in a long
tradition of counterintuitive examples in differential inclusions and in
differential geometry.

In the theory of differential inclusions you are looking at problems of
the following type.

Problem
Given a set K of k × n matrices study maps u : Rn(or Ω ⊂ Rn)→ Rk

such that
∇u(x) ∈ K for all x ∈ Ω. (2)

It happens in several interesting situations that C1 solutions are not so
interesting because they are forced to be affine. In these cases we can
look at Lipschitz solutions (which are differentiable a.e.!) and we turn
(2) into

∇v(x) ∈ K for almost all x ∈ Ω. (3)
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Differential inclusions II

Let us look at two “cousins” of the D-S Theorem.

Exercise
Consider two 2× 2 matrices A and B: is there a Lipschitz planar map
u : R2 → R2 with ∇u = A “on the left” and ∇u = B “on the right"?

∇u = A

∇u = B
`
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Differential inclusions III

Solution: It exists if and only if the direction of ` is in the kernel of A−B.
However...

Theorem (Kirchheim 2003)
There are 2× 2 matrices A1,A2, . . . ,A5 and a Lipschitz map
u : R2 → R2 such that

I rank(Ai − Aj) = 2;
I ∇u ∈ {A1, . . . ,A5} almost everywhere;
I u is not affine.

NB: Not possible with 2 (Ball-James), 3 (Šverak) or 4
(Chlebik-Kirchheim).
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Differential inclusions IV

Another cousin: [Müller - Šverak 1999] there are solutions of nonlinear
strongly elliptic systems of PDEs which are nowhere differentiable.

Connection between differential inclusions and elliptic systems??
I.e.: the Cauchy-Riemann equations are a differential inclusion!

The techniques used by Kirchheim and Müller-Šverak have a long
tradition: Cellina, Bressan, Bressan-Flores, Dacorogna-Marcellini,
Sychev, Székelyhidi (Tartar, DiPerna).

[D-S 2007] This framework can be adapted to the Scheffer-Shnirelman
nonuniqueness theorem.
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A toy example

Ω ⊂ R2 smooth bounded open set. We look for planar (Lipschitz!)
real-valued maps α : Ω→ R such that

|∇α| = 1 (4)

(+ maybe some boundary conditions...).

PLAN: Start from some some smooth map ϕ0 with |∇ϕ0| < 1.

Set up an iteration scheme producing ϕ0 → ϕ1 → ϕ2 → . . .

such that

I |∇ϕk | < 1;
I ∫

Ω
(1− |∇ϕk |)| ≤ β

∫
Ω

(1− |∇ϕk−1|)

(where β < 1 is independent of k !). Prove convergence for ϕk .
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A toy example II

The iteration: from ϕk = ϕ to ϕk+1= ψ

Ω

A region R where ∇ϕ is almost constant
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A toy example III

We make the slope of ϕ “steeper in average” in R by adding a periodic
function which oscillates rapidly (in the direction of ∇ϕ): we see below
a cross section of ϕ and of the perturbed function x 7→ ϕ(x) + 1

λp(λx)

Next, cut off the perturbation to make it compactly supported in the
region R:

ψ(x) = ϕ(x) +
1
λ

p(λx)c(x)

(the cut-off c is compactly supported in R but mostly 1 in there).
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A toy example IV

We are now ready for the key computation:

∇ψ(x) = ∇ϕ(x) + c(x)∇p(λx)︸ ︷︷ ︸
Improvement

+
1
λ

p(λx)∇c(x)︸ ︷︷ ︸
Error

The Improvement “pushes” the slope towards 1 (at least in most
places!).

The error can be made as small as we wish if λ is very large: this is not
destroying what we gained with the Improvement.

Take care, do not get immediately to slope 1 (or above!) with the
Improvement: for λ large we will keep the inequality |∇ψ| < 1.
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A toy example V

Repeat now this in many many small balls which cover a substantial
portion of the region where |∇ϕ| is “far” from 1.

Ω
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From analysis to geometry

The upshot is: in all these “crazy” constructions the final (more or less
counterintuitive) map is achieved through the addition of very fine
oscillations to some underlying “subsolution”: the oscillations “pile up”
and we reach the desired map only after infinitely many steps.

The Müller-Šverak paper is a landmark result also because the
authors realized that similar ideas had already been used in geometry.

In particular Müller and Šverak introduced a suitable variant of
Gromov’s convex integration, a tool to prove h-principle results.
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The Nash-Kuiper Theorem

An older tradition of counterintituive construction indeed exists in
differential geometry (Nash-Kuiper, Smale’s paradox, Gromov,
Eliashberg, ...).

Rather than trying to introduce the h-principle let me give an example,
(maybe the “mother” of all these constructions?).
Consider a (smooth) Riemannian manifold (M,g): an isometry
u : M → RN is a map preserving the length of curves.

In what follows we deal with C1 maps which are also embeddings:
isometric embeddings.

Corollary

Consider the standard sphere (S2, σ) or the flat square ([0,1]2, f ).
For any given ε > 0 there are C1 isometric embeddings of these
manifolds in a euclidean three-dimensional ball of radius ε, Bε(0) ⊂ R3!
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h-principle

Indeed the Theorem of Nash-Kuiper is much more general and much
more precise: every short embedding (i.e. which shrinks the length of
curves) of a compact Riemannian manifold can be uniformly
approximated by C1 isometric embeddings.

In the framework introduced by Gromov this can be translated into a
“C0-dense h-principle” (combining Nash-Kuiper with the Hirsch-Smale
h-principle).

[D-S 2007] “Ultimately” there exists a similar dense h-principle
statement for weak solutions of the Euler equations.

Something like that holds for all the results mentioned in the theory of
differential inclusions... With a big caveat:

I in differential geometry people work in a C0-type space;
I in analysis people work in a L∞-type space.
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Who cares about weak solutions ?

Let us go back to the Navier-Stokes equations and assume that the
“viscosity” is small:

∂tv + div (v ⊗ v) +∇p = ε∆v
div v = 0

d
dt

∫
|v |2(x , t) dx︸ ︷︷ ︸

E(t)

= − ε
∫
|Dv |2(x , t) dx︸ ︷︷ ︸

Q(t)

The Kolmogorov’s theory of fully developed turbulence (K41) predicts
that for most solutions Q(t) is independent of ε. More precisely

Q(t) = −βE(t)
5
3

(provided that the macroscopic scale of the flow is fixed, say 1!).
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Who cares about weak solutions? II

There is a very large literature about the theory of turbulence both on
the physical and mathematical side. But to my knowledge there is no
rigorous proof of the existence of one single sequence of solutions vεk

to Navier-Stokes with
I εk ↓ 0;
I E(vεk ) ≤ C;
I Q(vεk ) ≥ c > 0.

In a famous paper published on 1949, Lars Onsager rederived
Kolmogorov’s theory independently. But he also explored the
possibility of setting ε = 0 and develop a theory of “ideal turbulence”.

In doing so he advanced a remarkable conjecture
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Who cares about weak solutions? III

Conjecture (Onsager 1949)
(A) Assume v is a (periodic) weak solution of the Euler equations
satisfying an Hölder condition with exponent α > 1

3 :

|v(x , t)− v(y , t)| ≤ C|x − y |α

Then the total kinetic energy of v is conserved:

E(t) =

∫
|v |2(x , t) dx ≡ const.

(B) Let α < 1
3 . Then there are weak solutions satisfying the Hölder

condition with exponent α such that
the total kinetic energy is not constant
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Who cares about weak solutions? IV

The solutions considered by Onsager are not differentiable... A
physicist (with a Nobel prize in chemistry) considers indeed weak
solutions in our modern sense in 1949.

And he gave a very rigorous definition, following “road 2” from some
slides ago, i.e. via a Fourier series expansion.

Part (A) of the Conjecture has been proved by Eyink and
Constantin-E-Titi in 1993. (see also
Cheskidov-Constantin-Friedlander-Shvidkoy 2008)

Concerning Part (B), Scheffer’s example is the first rigorous instance
(although the velocity is not even bounded!).
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Continuous dissipative solutions

Theorem (D-Székelyhidi 2011)
Let I be a compact interval and e : I → R any given smooth positive
function. Then there is a continuous solution (v ,p) of the Euler
equations in T3 × I such that∫

|v |2(x , t) dx = e(t) ∀t ∈ I .

To our knowledge:
I This is the first example of its kind in the “analysis of PDEs” which

lies in the “C0 category” (which is instead customary in geometry);
I It relies upon “more complicated elliptic operators” (∆ and ∆2)

whereas all other “convex integration” constructions rely on
“integrating” dk

drk (cp. with a question of Gromov).
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Hölder dissipative solutions

Theorem (D-Székelyhidi 2012)
Let I be a compact interval, e : I → R any given smooth positive
function and α < 1

10 . Then there is a α-Hölder solution (v ,p) of the
Euler equations in T3 × I such that∫

|v |2(x , t) dx = e(t) ∀t ∈ I .

Further work in progress: nonuniqueness, 2d ... (with Choffrut, Daneri,
and Székelyhidi).
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A funny coincidence?

[Borisov 1963, 2004] The Nash-Kuiper Theorem for isometric
embeddings holds for C1,α maps if α is sufficiently small (recall: C1,α

means C1 + the differential of the map is α-Hölder). For instance

Theorem
There is an α0 > 0 with the following property. Consider the standard
sphere (S2, σ). For any given ε and any α < α0 there are C1,α

isometric embeddings of these manifolds in a euclidean
three-dimensional ball of radius ε, Bε(0) ⊂ R3.

See [Conti-D-Székelyhidi 2009] for a shorter proof and more general
results in this direction.
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A funny coincidence? II

[Borisov, fifties] The Nash-Kuiper statement does not hold for C1,α

isometric embeddings of surfaces if α is sufficiently large. For instance

Theorem
If α > 2

3 and v is any C1,α isometric embedding of the standard sphere
in R3, then v(S2) is “the usual sphere”, i.e. the boundary of a unit ball.

There is therefore a striking analogy with the Onsager’s conjecture:
I Large Hölder exponents⇒ “rigidity”.
I Small Hölder exponents allows for “flexibility” of the solutions.

[Conti-D-Székelyhidi 2009] It is possible to give a much shorter proof
of Borisov’s Theorem exploiting the key computations of the
Constantin-E-Titi proof of the “rigidity part” of Onsager’s conjecture.
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Thank you

for your attention!
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