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Set up

Diffusion: Global Instability

Main question:

Understand how small forces produce large effects in mechanical systems
without friction

What is diffusion (or global instability)?

Diffusion ≡ Gaining lots of energy by applying small forces.

Diffusion ≡ Changes of order 1 in the actions (instabilities) for
arbitrarily small perturbations of integrable systems.

If a periodic perturbation is applied to a system; will the perturbation
accumulate or will it average out?
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Set up

Hamiltonian systems with more than 2 degrees of freedom

The main conjecture:
“Typical systems in action-angle variables have orbits whose actions
change widely even if the systems are close to integrable”
Evidences:

Mathematical:
An example due to Arnold [Arnold64] (to be discussed later as an a
priori unstable system)

Numerical studies (Chirikov, Tennyson, Lieberman 75 on)

Physical intuition (Fermi 34 on)

Amadeu Delshams (UPC) Global instability in mechanical systems July 4th , 2012 4 / 43



Set up

Stability or Instability?

Main Goals

Can we distinguish when perturbations accumulate and when they do not?

Given a concrete system, can we say whether the perturbations
accumulate or not?

Can we design systems for which the perturbations accumulate (e.g
satellites that use the gravitational energy to move...)

Can we design systems for which the perturbations do not accumulate
(particle accelerators, plasma devices...)
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Set up

Poincaré’s program

Poincaré’s program to analyze dynamical systems

Given a concrete dynamical system:

1 Find landmarks that organize the long-term behavior (periodic orbits,
invariant manifolds, homoclinic orbits, KAM tori, . . .

2 Perform a local analysis around them (normal forms, linearizations, . . .

3 Study how all this fits together (topology)

We obtain an skeleton of the dynamics. In particular, we may obtain
regions of instability close to saddle invariant objects
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Set up

Poincaré’s program

In this talk, we will describe several combinations of invariant objects and
their connections which

Lead to large effects.

Are persistent.

Happen in near integrable systems.

There are efficient algorithms to compute them.

The method of study that we will propose will require to identify “roads”
in phase space in which the orbits move easily.
We will identify several combinations of objects which lead to diffusion.
i.e. different mechanisms with different geometric intuition and different
quantitative properties.
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Set up

Tools

New and old Tools

Main tools we will use are standard tools accumulated over many years:

Averaging methods

KAM theory

Persistence of normally hyperbolic invariant manifolds (NHIM)

And new ones:

Two dynamics on the NHIM: inner map and scattering map

Correctly aligned windows (with M. Gidea, R. de la LLave and P.
Roldán)

Computer assisted proofs (with M. Capiñski, P. Roldán, P.
Zgliczyñski)

Warning: The effects considered happen only in ≥ 5 dimensions, so it will
require some imagination in the presentation.
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Set up

This talk

We are going to consider in this talk only two kinds of Hamiltonian
systems:

a priori unstable (2+1/2 or more degrees of freedom)

a priori chaotic Hamiltonian systems with 2 + 1/2 degrees of freedom
((Quasi)-periodic potentials in geodesic flows and Elliptic Restricted
Three Body Problem (ERTBP).

Other systems under current research (Newer directions):

Quantitative estimates for time diffusion in celestial mechanics, close
to (saddle) Libration points (D-Gidea-Roldán)

Computer assisted proofs of instability in celestial mechanics
(Capiñski-D-Roldán-Capiñski-Zgliczyñski)

Instability in non-conservative systems, like in: Computational
neuroscience (D-Guillamon-Huguet), Reaction dynamics
(Borondo-D-Roldán) . . .
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Set up

A priori unstable and a priori chaotic systems

A priori unstable (Hamiltonian) systems:

Hǫ(p, q, I , ϕ, t) = H0(p, q, I ) + ǫh(p, q, I , ϕ, t; ǫ)

For ǫ = 0, H0(p, q, I ) is autonomous (H0 = E =constant) integrable
but with some saddle variables p, q. Typical example: one rotor (or
more) plus one (or more) pendulum.

A priori chaotic (Hamiltonian) systems:

Hǫ(p, q, t) = H0(p, q) + ǫh(p, q, t; ǫ)

For ǫ = 0, H0(p, q) is autonomous non-integrable but with some
saddle invariant object inside every level of energy H0 = E giving rise
to chaotic motion inside H0 = E . Typical example: geodesic flow on
a manifold.

Main question: What happens to E (t) for small ǫ 6= 0? Is there global
instability?: E (t) − E (0) = O(1) or even E (t) −→ ∞?
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A priori unstable systems

Instability for a priori unstable Hamiltonian systems

We consider a 2π-periodic in time perturbation of a pendulum and a rotor
described by the non-autonomous Hamiltonian,

Hǫ(p, q, I , ϕ, t) = H0(p, q, I ) + ǫh(p, q, I , ϕ, t; ǫ)
= P±(p, q) + 1

2 I 2 + ǫh(p, q, I , ϕ, t; ǫ)
(1)

where (p, q, I , ϕ, t) ∈ (R × T)2 × T and

P±(p, q) = ±
(

1

2
p2 + V (q)

)
(2)

and V (q) is a 2π-periodic function. We will refer to P±(p, q) as the
pendulum.
Note. This model [Chierchia-Gallavotti94] comes from a normal form
around a single resonance of a nearly integrable Hamiltonian
[D-Gutiérrez01] and originates in Poincaré and Arnold.

Amadeu Delshams (UPC) Global instability in mechanical systems July 4th, 2012 11 / 43



A priori unstable systems

Main result for a priori unstable systems

Theorem (D-Llave-Seara06)

Consider the Hamiltonian (1) where V and h are uniformly Cr+2 for
r ≥ r0, sufficiently large. Assume also that

H1 The potential V : T → R has a unique global maximum at q = 0
which is non-degenerate. Denote by (q0(t), p0(t)) an orbit of the
pendulum P±(p, q) homoclinic to (0, 0).

H2 The Melnikov potential, associated to h (and to the homoclinic orbit
(p0, q0)):

L(I , ϕ, s) = −
∫ +∞

−∞

(h(p0(σ), q0(σ), I , ϕ + Iσ, s + σ; 0)

−h(0, 0, I , ϕ + Iσ, s + σ; 0))dσ

(3)

satisfies concrete non-degeneracy conditions.

H3 The perturbation term h satisfies concrete non-degeneracy conditions.
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A priori unstable systems

Then, there is ǫ∗ > 0 such that for 0 < |ǫ| < ǫ∗, and for any interval [I ∗−, I
∗
+],

there exists a trajectory x̃(t) of the system (1) such that for some T > 0,

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.

Remark

Arbitrary excursions in the I variable can also be realized.
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A priori unstable systems

Hypotheses H1, H2 and H3 are C2 generic, so, the following short version
of the Theorem also holds:

Theorem (D-Huguet09)

Consider the Hamiltonian (1) and assume that V and h are Cr+2 functions
which are C2 generic, with r > r0, large enough. Then there is ǫ∗ > 0 such
that for 0 < |ǫ| < ǫ∗ and for any interval [I ∗−, I

∗
+], there exists a trajectory

x̃(t) of the system with Hamiltonian (1) such that for some T > 0

I (x̃(0)) ≤ I ∗−; I (x̃(T )) ≥ I ∗+.

Remark

A (non optimal) value of r0 which follows from our argument is r0 = 242.
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A priori unstable systems

Multidimensional a priori unstable Hamiltonian systems

Consider a periodic in time perturbation of n pendula and a d-dimensional
rotor described by the non-autonomous Hamiltonian,

H(p, q, I , ϕ, t, ε) = P(p, q) + h(I ) + εQ(p, q, I , ϕ, t, ε), (4)

with P(p, q) =
∑n

j=1 Pj (pj , qj), Pj(pj , qj) = ±
(

1
2p2

j + Vj(qj)
)
, where

I ∈ I ⊂ R
d , ϕ ∈ T

d , I an open set, p, q ∈ R
n, t ∈ T

1, and Pj(pj , qj ) is a
pendulum for the saddle variables pj , qj . For ǫ = 0, the d-dimensional
action I remains constant. Under similar hypotheses as for n = d = 1,

Theorem (D-Llave-Seara12)

For every δ > 0, there exists ε0 > 0, such that for every 0 < |ε| < ε0,
given I± ∈ I,there exists a solution x̃(t) of (4) and T > 0, such that

|I (x̃(0)) − I−| ≤ Cδ and |I (x̃(T )) − I+| ≤ Cδ (5)
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A priori unstable systems

One can forget about δ and prescribe arbitrary paths on a set I∗.
This set I∗ is described precisely in the course of the proof, and is
determined by the non-degeneracy assumptions. The main idea is
that I∗ is obtained from the domain of definition, just eliminating
some sets of codimension 2, like double resonances, from the open set
where the intersection of stable and unstable manifolds of a normally
hyperbolic invariant manifold is transversal.

Codimension 2 objects do not separate the regions and can be
contoured so that they do not obstruct the change along the paths.
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A priori unstable systems
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A priori unstable systems

Proof and other contributions

This problem of instability, also called Arnold diffusion, was posed first by
Arnold in 1964, and there have been some other contributions, using
geometrical or variational methods: [Chierchia-Gallavotti94-98],
[Berti-Biasco-Bolle03], [Marco-Sauzin03], [Mather04], [Cheng-Yan04],
[Gidea-Llave06], [Piftankin-Treschev07], [Kaloshin-Levi08].

Amadeu Delshams (UPC) Global instability in mechanical systems July 4th, 2012 18 / 43



A priori unstable systems

Idea of the proof: use of two (or more) dynamics on Λ̃

Find a big invariant saddle object: a NHIM (normally hyperbolic
invariant manifold: a global version of a center manifold) Λ̃ with
transverse associated stable and unstable manifolds along some
homoclinic manifold Γ: Wu(Λ̃) ⋔Γ Ws(Λ̃).

Compute the invariant objects (typically tori T ) which may prevent
instability for the inner dynamics of the NHIM.

Compute the scattering map S = SΓ : Λ̃ → Λ̃ on the NHIM
associated to Γ and consider it as an outer dynamics on the NHIM (a
second dynamics on Γ).

Check that S(TIi ) ⋔ TIi+1
for a sequence of tori {TIi}N

i=1 with
|IN − I1| = O(1), and construct a transition chain of whiskered tori,
i.e. Wu(TIi ) ⋔ Ws(TIi+1

).

Standard shadowing methods provide an orbit that follows closely the
transition chain.
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An example of direct verification

An example of direct verification

Consider the Hamiltonian

Hǫ(p, q, I , ϕ, t) = ±
(

p2

2
+ cos q − 1

)
+

I 2

2
+ ǫf (q)g(ϕ, t). (6)

with
f (q) = cos q, (7)

and
g(ϕ, t) =

∑

(k,l)∈N2

ak,l cos(kϕ− lt − σk,l ). (8)

with
α̂ρ(1+β)k r (1+β)l ≤ |ak,l | ≤ αρk r l , (9)

where 0 < ρ, r < 1 are real numbers to be chosen small (independently of
ǫ∗ and the interval [I ∗−, I

∗
+] of diffusion), and 0 ≤ β < 1. For instance,

g(ϕ, t) = R

(
1

(1 − ρe iϕ)(1 − re−it)

)
.
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An example of direct verification

Result for the example

Theorem (D-Huguet11)

Consider a Hamiltonian of the form (6) where f (q) is given by (7) and
g(ϕ, t) is any analytic function of the form (7) with non-vanishing Fourier
coefficients satisfying (9). Assume also that either 1.6 |a1,0/a0,1| < 1 or
1.6 |a0,1/a1,0| < 1.
Then, for any I ∗+ > 0 there exists ǫ∗ = ǫ∗(I ∗+) > 0 such that for any
0 < I− < I+ < I ∗+ and any 0 < |ǫ| < ǫ∗, there exists a trajectory
(p(t), q(t), I (t), ϕ(t)) of the Hamiltonian (1) such that for some T > 0

I (0) ≤ I−; I (T ) ≥ I+.
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An example of direct verification

Remark on the perturbation

If g(ϕ, t) = G (t), the action I is constant.

If g(ϕ, t) = G (ϕ), Hamiltonian (6) is autonomous, i.e., Hǫ is
constant, so that only deviations of size

√
ǫ are possible for I .

The same happens when g(ϕ, t) = G (ψ), where ψ = k0ϕ+ l0t,
introducing ψ as a new angular variable.

In these three cases, an infinite number of Fourier coefficients ak,l of the
function g(ϕ, t) in (7) vanish. This is one of the reasons why we have
assumed conditions (9) for the harmonics ak,l .
More general, and of course more technical, set of conditions for more
general perturbations can be given explicitly.
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A priori chaotic systems: geodesic flow

(Quasi)-periodic perturbations of geodesic flows

Theorem ([D-Llave-Seara06])

Let M be a n-dimensional manifold, g a Cr metric on it (r sufficiently
large). Assume:

H1 There exists a closed geodesic “Λ” such that its corresponding
periodic orbit Λ̂ under the geodesic flow is hyperbolic.

H2 There exists another geodesic “γ” such that γ̂ is a transversal
homoclinic orbit to Λ̂.
That is, γ̂ is contained in the intersection of the stable and unstable
manifolds of Λ̂, W s

Λ̂
, W u

Λ̂
, in the unit tangent bundle.

Moreover, we assume that the intersection of the stable and unstable
manifolds of Λ̂ is transversal along γ̂. That is,

Tγ(t)W
s

Λ̂
+ Tγ(t)W

u

Λ̂
= Tγ(t)S1M, t ∈ R.
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A priori chaotic systems: geodesic flow

Abundance of Hypoteses H1, H2

Hipotheses H1, H2 are abundant:

They are generic on T
2 [Morse24], [Hedlund32], [Mather94].

They hold on any closed surface of genus bigger or equal than 2, if
r ≥ 2 + δ, δ > 0. [Katok82]).

They are generic in the C2 topology for any closed surface
[Contreras-Paternain02].
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A priori chaotic systems: geodesic flow

(Quasi)-periodic perturbations of geodesic flows

Let ν ∈ R
d be Diophantine, r ∈ N be sufficiently large (depending on τ ,

the Diophantine exponent of ν).
Let g be a Cr metric on a compact manifold M, verifying hypotheses H1,
H2, and U : M × T

d → R a generic Cr function.
Consider the time dependent Lagrangian

L(q, q̇, νt) =
1

2
gq(q̇, q̇) − U(q, νt), (10)

where gq denotes the metric in TqM.
Then, the Euler-Lagrange equation of L has a solution q(t) whose energy

E (t) =
1

2
gq(q̇(t), q̇(t)) + U(q(t), νt),

tends to infinity as t → ∞.
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A priori chaotic systems: ERTBP

(Planar) elliptic restricted three body problem (ERTBP)

Consider the motion of a particle q with zero mass (comet) under the
attraction of two particles q1 (Sun, with mass 1 − µ) and q2 (Jupiter,
with mass µ), called primaries, which move in elliptic orbits with
eccentricity e0 around their center of mass.

The motion of q is described by a time-periodic Hamiltonian system,
with 2 and 1/2 degrees of freedom, with Hamiltonian

H(q, p, t; e0, µ) =
p2

2
− (1 − µ)

|q − q1(t, e0)|
− µ

|q − q2(t, e0)|
.

We consider the motion of the particle q (comet) when it moves
outside of the orbit of the primaries along nearly parabolic orbits.

Parameters: 0 < µ < 1, e0 ≥ 0, small.
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A priori chaotic systems: ERTBP

The two body problem: Sun-comet for µ = 0

When µ = 0, the Sun is fixed at the origin: q1(t, e0) = 0

The Sun q1 and the comet q form the two-body problem.

In polar coordinates: q = (r cosα, r sinα), α ∈ T, r ≥ 0, the
Hamiltonian of the two body problem becomes

H0(r ,Pr , α,G ) =
P2

r

2
+

G 2

2r2
− 1

r
,

H0 is the energy and G = Pα is the angular momentum.

H0 and G are both first integrals of motion.

If H0 = h < 0, motions are elliptic with semi-major axis a = 1/(−2h)
and eccentricity e =

√
1 + 2hG 2.

If h = 0 (which corresponds to e = 1) the motion is parabolic.

The two-body problem is integrable.
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A priori chaotic systems: ERTBP

Diffusion of the angular momentum G

In the elliptic restricted three body (ERTBP) problem we want to see that
the angular momentum of the comet G (t) can have large changes when
the eccentricity e0 > 0 and µ > 0 are small enough:

Theorem (D-Kaloshin-Rosa-Seara12)

Given any G1,G2 ≫ 1, there exist trajectories of the ERTBP whose
angular momentum satisfies, for some T > 0:

G (0) < G1 G (T ) > G2

Proven for 0 < µ≪ e0 ≪ 1 and any 1 ≪ G1,G2 ≪ 1/e0.
Likely (need still some work) for any 0 < e0 < 1 and 0 < µ≪ 1.

Remark

Two different scattering maps are used in the construction of the diffusing
trajectories.
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Proof for the example

Sketch of the proof for the example

Part I: Existence of a normally hyperbolic invariant manifold with
associated stable and unstable manifolds.

Part II: Outer dynamics.

Part III: Inner dynamics.

Part IV: Construction of a transition chain.
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Proof for the example I: A NHIM with transverse manifolds

ǫ = 0

p

q

I

s
ϕ

Λ̃

(p0(τ), q0(τ))

Normally hyperbolic invariant manifold (3D)

Λ̃ = {(0, 0, I , ϕ, s) : (I , ϕ, s) ∈ R × T
2}

Invariant manifolds (4D):

W s Λ̃ = W uΛ̃ = {(p0(τ), q0(τ), I , ϕ, s) : τ ∈ R, I ∈ [I−, I+], (ϕ, s) ∈ T
2}

where
q0(t) = 4 arctan e±t , p0(t) = 2/cosh t.

is the separatrix for positive p of the standard pendulum

P(p, q) = p2/2 + cos q − 1.
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Proof for the example I: A NHIM with transverse manifolds

0 < ǫ ≪ 1

p

q

I

s

ϕ

Λ̃ǫ

ǫ

ǫγ1

ǫγ2

ǫγ2

By the theory of NHIM, Λ̃ persists to Λ̃ǫ.

W s Λ̃ǫ and W uΛ̃ǫ are ǫ-close to the unperturbed ones.

Γǫ ⊂ W s Λ̃ǫ ∩ W uΛ̃ǫ homoclinic manifold.

Using hypothesis H2’, W s Λ̃ǫ ⋔ W uΛ̃ǫ along Γǫ.

Amadeu Delshams (UPC) Global instability in mechanical systems July 4th, 2012 31 / 43



Proof for the example I: A NHIM with transverse manifolds

Let us look at hypothesis H2′ for the example:

H2’ Given real numbers I− < I+, assume that for any value of I ∈ (I−, I+)
the map

τ ∈ R 7→ L(I , ϕ − Iτ, s − τ)

has a non-degenerate critical point τ which is locally given by the
implicit function theorem in the form

τ = τ∗(I , ϕ, s),

with τ∗ a smooth function.

Then [D-Llave-Seara06] for ǫ small enough, there exists a locally unique
point z̃ of the form

z̃(I , ϕ, s; ǫ) = (p0(τ) + O(ǫ), q0(τ) + O(ǫ), I , ϕ, s),

such that W s(Λ̃ǫ) ⋔ W u(Λ̃ǫ) at z̃.
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Proof for the example I: A NHIM with transverse manifolds

For the perturbation cos q g(ϕ, s), where

g(ϕ, s) =
∑

(k,l)∈N2

ak,l cos(kϕ− ls − σk,l ),

with α̂ρ(1+β)k r (1+β)l ≤ |ak,l | ≤ αρk r l , the Melnikov potential

L(I , ϕ, s) =
1

2

∫
∞

−∞

p2
0(σ)g(ϕ + Iσ, s + σ)dσ,

is given by

L(I , ϕ, s) =
∑

(k,l)∈N2

Ak,l (I ) cos(kϕ− ls − σk,l ),

with

Ak,l (I ) = 2π
(kI − l)

sinh π
2 (kI − l)

ak,l ,
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Proof for the example I: A NHIM with transverse manifolds

Graph and level curves of the Melnikov potential

L(I , ϕ, s) = A0,0 + A1,0 cosϕ+ A0,1(I ) cos s + O2(ρ, r),

for 0 < A1,0 < A0,1 < 1, where we have fixed σ1,0 = σ0,1 = 0

2π

π

0

2π

π

0

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 6.5

ϕ

s

Four non-degenerate critical points: maximum (0, 0), minimum (π, π) and
two saddles (0, π), (π, 0).
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Proof for the example II: Outer dynamics: Scattering map

Scattering map (outer map)

Ingredients:

Consider the foliations Fs,u:

W s,u

Λ̃ǫ

= ∪
x∈Λ̃ǫ

W s,u
x

Define the wave operators Ω+, Ω−:

Ω± : W s,u

Λ̃ǫ

→ Λ̃ǫ

x 7→ Ω±(x)

defined by x ∈ W s,u

Ω±(x).

Ω− is a diffeomorphism from Γǫ to HΓǫ

− ≡ Ω−(Γǫ).

Define
SΓ

ǫ = Ω+ ◦ (ΩΓǫ

− )−1
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Proof for the example II: Outer dynamics: Scattering map

Scattering map (outer map):

Sǫ : HΓǫ

− ⊂ Λ̃ǫ → HΓǫ

+ ⊂ Λ̃ǫ

x− 7→ x+

defined by x+ = Sǫ(x−) ⇔ ∃ z ∈ Γǫ, such that

dist(Φt(z),Φt(x±)) → 0 for t → ±∞

Sǫ is exact symplectic [D-Llave-Seara08]. Some examples in celestial
mechanics numerically computed [Canalias-D-Masdemont-Roldán06],
[D-Masdemont-Roldán08], [D-Gidea-Roldán12].
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Proof for the example II: Outer dynamics: Scattering map

Perturbative formula for the Hamiltonian Sǫ generating the
deformation of the scattering map Sǫ [D-Llave-Seara08]:

Sǫ(I , ϕ, s) = −L∗(I , ϕ − Is) + O(ǫ). (11)

where the reduced Poincaré function L∗(I , θ̃) is defined by

L(I , ϕ− Iτ∗(I , ϕ, s), s − τ∗(I , ϕ, s)) := L∗(I , ϕ− Is). (12)

The computation of Sǫ up to first order gives

Sǫ(I , ϕ, s) = (I , ϕ, s) + ǫJ∇L∗(I , ϕ − Is) + O(ǫ2), (13)

The scattering map can jump distances of O(ǫ) in terms of the
variable I along the level curves of L∗(I , θ̃).
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Proof for the example II: Outer dynamics: Scattering map

Going back to our example. . .

Graph and level curves of the reduced Poincaré function L∗(I , θ̃), where
θ̃ = ϕ− Is, for a1,0 = 1/4 and a0,1 = 1/2:

2π

π

0

 5

 0

-5

 4.2
 4.4
 4.6
 4.8
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Proof for the example III: Inner dynamics

Main result for the inner dynamics

Theorem

Assume that r > 2(m + 1)2 and m ≥ 10, then there exists a discrete
sequence of invariant tori {Ti}N

i=1 in Λ̃ǫ such that:

They are distributed along the actions in the interval (I−, I+).

They are O(ǫ1+η)-closely spaced in terms of the action variables,
where 0 < η ≪ 1.

They are given by the level sets defined by equation F (I , ϕ, s; ǫ) = E,
where F is a C2 function F which has different expressions depending
on the region of the phase space where invariant tori lie:

Flat tori region. Primary KAM tori.
Big gaps region. Primary KAM tori and Secondary KAM tori.

Proof: Averaging procedure + KAM Theorem.
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Proof for the example III: Inner dynamics

Invariant objects in the NHIM Λ̃ǫ

ǫγ1

ǫ
1+η

ǫ
1+η

ǫ
1+η

ǫγ2

primary tori

secondary tori
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Proof for the example IV: Construction of a transition chain

We combine now the inner and the outer dynamics to construct a
transition chain along Λ̃ǫ:
A sequence of whiskered tori {Ti}N

i=1 such that

W u
τi

⋔ W s
τi+1

Standard shadowing methods [Fontich-Martin00] provide orbits
connecting arbitrary small neighborhoods of τ1 and τN .

We will use that

Sǫ(τi) ⋔
Λ̃ǫ

τi+1 ⇒ W u
τi

⋔ W s
τi+1
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Proof for the example IV: Construction of a transition chain

Invariant tori (primary and secondary) in the resonant region around I = 0
(red curves) given implicitly by the level sets of the function F ∗(I , θ̃) with
k0 = 1, l0 = 0 and a1,0 = 1/2. Images of these invariant tori (red curves)
under the scattering map generated by the reduced Poincaré function
L∗(I , θ̃):
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Proof for the example IV: Construction of a transition chain

Illustration of how to combine the two dynamics to cross the big gaps
region. Invariant tori for the inner dynamics (red curves) and invariant sets
for the outer dynamics (blue curves). Inner dynamics is represented by
dashed lines whereas outer dynamics is represented by solid lines.
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