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The stability issue

Geometric and functional inequalities play a crucial role in several
problems arising in the calculus of variations, partial differential
equations, geometry, etc.
More recently, there has been a growing interest in studying the
stability for such inequalities. The basic question one wants to address
is the following:
Suppose we are given a functional inequality for which minimizers are
known. Can we prove, in some quantitative way, that if a function
“almost attains the equality” then it is close (in some suitable sense) to
one of the minimizers?
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Several results have been obtained in this direction, showing stability
for isoperimetric inequalities, the Brunn-Minkowski inequality on
convex sets, Sobolev and Gagliardo-Nirenberg inequalities, etc.

The aim of this talk is to describe some ways to attack this kind of
problems, and show some applications.
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Overview of the talk

1 Stability for isoperimetric inequalities
2 Stability for Gagliardo-Nirenberg and Log-HLS, and long-time

behavior for the critical mass Keller-Segel equation
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Stability for isoperimetric inequalities

Classical isoperimetric inequality.
For any bounded open smooth set E ⊂ Rn, the perimeter P(E)
controls the volume |E |:

P(E) ≥ n|B1|1/n|E |(n−1)/n.

Moreover equality holds if and only if E is a ball.

Stability question: if E is “almost a minimizer” does this imply that E is
close to a ball, if possible in some quantitative way?
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Isoperimetric deficit of E :

δ(E) :=
P(E)

n|B1|1/n|E |(n−1)/n − 1 .

Observe that δ(E) ≥ 0.
Moreover δ(E) = 0 if and only if E is a ball.

Asymmetry index of E :

A(E) := inf
x ,r

{
|E∆(Br (x))|

|E |
: |Br | = |E |

}
Here E∆F denotes the symmetric difference between the sets E and
F , i.e., E∆F := (E \ F ) ∪ (F \ E).
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Question: can we find positive constants C = C(n) and α = α(n) such
that

A(E) ≤ C δ(E)α ?

Remark: by testing the above inequality on a sequence of ellipsoids
converging to B1, we get α ≤ 1/2.

This is actually the sharp result:

Theorem (Fusco-Maggi-Pratelli, 2008)
The stability result holds with α = 1/2.
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The proof of Fusco-Maggi-Pratelli uses symmetrization techniques
which are very specific to the Euclidean case.
We now describe a different approach which has the advantage to
work for much more general perimeter-type functionals. More
precisely, we replace the classical perimeter by

Pf (E) :=

∫
∂E

f (νE )

with f positively 1-homogeneous and convex, and we look for the
corresponding isoperimetric inequality (the so-called Wulff inequality ).

Theorem (Figalli-Maggi-Pratelli, 2010)
The stability result still holds for Pf with α = 1/2, and C an explicit
constant depending only on the dimension (and not on f ).
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Gromov’s proof of the isoperimetric inequality

Given E smooth and bounded, consider the probability measures

µ :=
χE (x)

|E |
dx , ν :=

χB1(y)

|B1|
dy .

By optimal transport theory, there exists ϕ : Rn → R convex such that
T := ∇ϕ sends µ onto ν:

T#µ = ν (i.e. µ(T−1(A)) = ν(A) for all A Borel)
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Properties of T:
1 |T | ≤ 1 in E (since T (E) ⊂ B1)
2 det(DT ) = |B1|/|E | (since T#µ = ν)
3 divT ≥ n(det(DT ))1/n (wait for the next slide).

Then:

P(E) =

∫
∂E

1
(1)

≥
∫
∂E
|T | ≥

∫
∂E

T · νE

=

∫
E

divT
(3)

≥ n
∫

E
(det(DT ))1/n

(2)
= n|B1|1/n|E |(n−1)/n.
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Let’s prove (3):
since T = ∇ϕ with ϕ convex, the eigenvalues λ1, . . . , λn of D2ϕ are
non-negative.
Hence:

divT = ∆ϕ = n

(
1
n

n∑
i=1

λi

)
≥ n

(
n∏

i=1

λi

)1/n

= n(det(DT ))1/n,

where we used the arithmetic-geometric inequality.
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This proof works also for the functional Pf and is very robust.
In particular, by carefully making “quantitative” each inequality one can
prove the desired stability result.
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Long-time asymptotic for the critical mass Keller-Segel
equation

The Keller-Segel equation describes the evolution of a cell population
ρ under the influence of a chemical attractant c produced by the cells
themselves.

Then the cell flux comprises two counteracting phenomena: random
motion of the cells described by Fick’s law (diffusion), and a tendency
to move towards higher concentrations of the attractant (drift).

Alessio Figalli (UT Austin) Stability in geom. & funct. ineq. Krakow, July 2, 2012 13 / 26



The Keller-Segel system:

∂ρ

∂t
(t , x) = ∆ρ(t , x)− div

[
ρ(t , x)∇c(t , x)

]
.

Here ρ(0, x) ∈ L1(R2) is non-negative, and c satisfies −∆c = ρ, that is

c(t , x) = − 1
2π

∫
R2

log |x − y |ρ(t , y) dy .
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Formal conservation laws:∫
R2
ρ(t , x) dx =

∫
R2
ρ(0, x) dx =: M,

d
dt

∫
R2

xρ(t , x) dx = 0,

d
dt

∫
R2
|x |2ρ(t , x) dx = 4M − 1

2π
M2
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Since
∫
|x |2ρ ≥ 0, something has to “go wrong” if M > 8π.

Indeed, it is by now well-known that:
1 M < 8π: diffusion dominates and the solution diffuses away to

infinity.
2 M > 8π: the restoring drift dominates and the solution collapses in

finite time.
3 M = 8π (critical mass case): solution exists globally in time and

there are infinitely many steady-states, which (up to a translation)
are given by

σκ(x) :=
8κ(

κ+ |x |2
)2 , κ > 0 .
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Assume from now on M = 8π and
∫

xρ(0, x) dx = 0.

Question: if ρ(t , ·)→ σκ as t →∞, how to select κ?

Answer: use the energy functionals

Hκ[ρ] :=

∫
R2

|√ρ(y)−√σκ(y)|2
√
σκ(y)

dy .

These functionals are decreasing along KS.
Moreover Hκ[σκ′ ] =∞ unless κ′ = κ.

So, if Hκ0 [ρ(0, ·)] := E0 <∞ then Hκ0 [ρ(t , ·)] ≤ E0, and ρ(t , ·) should
converge to σκ0 as t →∞.

This has been proved by Blanchet-Carrillo-Carlen (2010) using a
compactness argument. Our goal is to obtain an explicit rate of
convergence.
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Strategy:
differentiating Hκ0 along KS we get

d
dt
Hκ0 [ρ(t , ·)] = −D[ρ(t , ·)] ,

with
D[σ] :=

1
π

(
‖∇u‖22‖u‖44 − π‖u‖66

)
, u := σ1/4.

Note: by the Gagliardo-Nirenberg inequality (Del Pino-Dolbeault,
2002),

D[σ] ≥ 0.

In addition equality holds if and only if σ is a multiple of σκ(· − x0) for
some x0 ∈ R2, κ > 0.
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Question: When D[σ] is small, is σ close (in some sense) to a multiple
of σκ(· − x0)?

Theorem (Carlen-Figalli, 2011)
Let σ ≥ 0, ‖σ‖1 = 8π. Then

inf
κ>0,x0∈R2

‖σ3/2 − σκ(· − x0)3/2‖1 . D[σ]1/2.
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Integrating in time the relation

d
dt
Hκ0 [ρ(t , ·)] = −D[ρ(t , ·)] ,

we get (recall that Hκ0 ≥ 0)

inf
t∈[0,T ]

D[ρ(t , ·)] ≤ 1
T

∫ T

0
D[ρ(t , ·)] dt ≤ 1

T
Hκ0 [ρ(0, ·)] .

Hence, by the stability result for GN

‖ρ(̄t , ·)3/2 − σκ(· − x0)3/2‖1 ≤
C√
T

for some t̄ ∈ [0,T ], x0 ∈ R2, κ > 0.
Using that the baricenter is preserved in time, we easily get rid of x0.
Moreover, by some interpolation argument, we have

‖ρ(̄t , ·)− σκ‖1 ≤
C
Tα

for some α > 0, κ = κ(̄t).
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Problems:
1 Show that ρ(t , ·) approaches σκ for κ = κ0.
2 Show that eventually it remains close.

While (1) is easier, (2) requires much more work.
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Additional tool: exploit that the Logarithmic Hardy-Littlewood-Sobolev
(Log-HLS) functional

F [ρ] :=

∫
R2
ρ(x) log ρ(x) dx

+ 2
(∫

R2
ρ(x) dx

)−1 ∫
R2×R2

ρ(x) log |x − y |ρ(y) dx dy

is decreasing along KS, and is uniquely minimized at {σκ}κ>0.
We prove a “two sided stability” for it:

Theorem (Carlen-Figalli, 2011)

inf
κ
‖ρ− σκ‖β1

1 . F [ρ]−minF . inf
κ
‖ρ− σκ‖β2

1 .
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Hence, since F is decreasing in time:

C
Tα
≥ inf

κ
‖ρ(̄t , ·)− σκ‖1 &

(
F [ρ(̄t , ·)]−minF

)1/β2

≥ (F [ρ(T , ·)]−minF)1/β2 & inf
κ
‖ρ(T , ·)− σκ‖β1/β2

1

for all T � 1.

Finally Hκ0 [ρ(T , ·)] ≤ E0 implies that the infimum above is attained at
κ(T ), with

|κ(T )− κ0| ≤
C√

log(1 + T )
.
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This allows to prove a “two-scale” convergence result:

Theorem (Carlen-Figalli, 2011)
It holds:

inf
κ>0
‖ρ(t , ·)− σκ‖1 ≤ C (1 + t)−(1−ε)/320.

Moreover, the above infimum is achieved at some value κ(t) satisfying

|κ(t)− κ0| ≤
C√

log(e + t)
.

In particular

‖ρ(t , ·)− σκ0‖1 ≤
C√

log(e + t)
.
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It is interesting that the approach to equilibrium described by these
quantitative bounds takes place on two separate time scales: The
solution approaches the one-parameter family of (centered) stationary
states with at least a polynomial rate.
Then, perhaps much more gradually, at only a logarithmic rate, the
solution adjusts its spatial scale to finally converge to the unique
stationary solution within its basis of attraction.
It looks reasonable to expect such behavior: The initial data may, for
example, be exactly equal to σκ0 on the complement of a ball of very
large radius R, and yet may “look much more like” σκ on a ball of
smaller radius for some κ 6= κ0. One can then expect the solution to
first approach σκ, and then only slowly begin to feel its distant tails and
make the necessary adjustments to the spatial scale.
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THAT’S ALL!!
Thanks for your attention!
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