Liénard's polynomial system

Valery Gaiko National Academy of Sciences of Belarus

valery.gaiko@yahoo.com

Abstract

We consider the general Liénard polynomial system with an arbitrary (but finite) number of singular points in the form

 $\dot{x} = y, \quad \dot{y} = -x (1 + \beta_1 x + \ldots + \beta_{2l} x^{2l}) + y (\alpha_0 + \alpha_1 x + \ldots + \alpha_{2k} x^{2k}).$

Applying a canonical system with field rotation parameters,

$$\dot{x} = y,$$

$$\dot{y} = -x \left(1 + \beta_1 x \pm x^2 + \ldots + \beta_{2l-1} x^{2l-1} \pm x^{2l}\right) + y \left(\alpha_0 + x + \alpha_2 x^2 + \ldots + x^{2k-1} + \alpha_{2k} x^{2k}\right),$$

where $\beta_1, \beta_3, \ldots, \beta_{2l-1}$ are fixed and $\alpha_0, \alpha_2, \ldots, \alpha_{2k}$ are field rotation parameters, and using geometric properties of the spirals filling the interior and exterior domains of limit cycles, we prove the following theorem.

Theorem. The general Liénard polynomial system can have at most k+l limit cycles, k surrounding the origin and l surrounding one by one the other its singularities.

AMS Classification: Primary 34C07; Secondary 37G15.