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Presentation of the equations
• Viscous, incompressible, homogeneous fluid, in R3

• Velocity u = (u1, u2, u3)(t, x), pressure p(t, x)

(NS)

{
∂tu + u · ∇u −∆u = −∇p

div u = 0

with

∆u =
3∑

j=1
∂2

j u , div u =
3∑

j=1
∂juj , ∂j :=

∂

∂xj
, ∂t :=

∂

∂t

u · ∇u =
3∑

j=1
uj∂ju =

3∑
j=1

∂j(uju) .

Remark : The pressure can be eliminated by projection onto
divergence-free vector fields : P = Id−∇∆−1div.

Cauchy data : u|t=0 = u0.

Isabelle Gallagher, Paris 7 On the incompressible Navier-Stokes equations



Solving the equations

We want to find u(t, x) solution to (NS) in some sense (distributional,
classical...), such that u(0, x) ≡ u0(x).

Standard methods :
• Compactness methods :
- Find an a priori bound on the solution : ‖u(t)‖X ≤ C(u0) ;
- Construct a sequence of approximate equations (NS)n which can be
solved by the Cauchy-Lipschitz theorem : this yields a sequence of
approximate solutions (un)n∈N, uniformly bounded in X ;
- Use the uniform bound in X to construct weak limit points to the
sequence (un)n∈N : un ⇀ u ;
- Use space-time compactness to prove that u solves (NS).
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Solving the equations

• Banach fixed point theorem :
- Write the equation in integral form :

u(t) = et∆u(0) + B(u, u)(t)

- Apply a fixed point theorem.
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Fundamental properties of (NS)

• Conservation of the energy

Define
‖f ‖L2 :=

(∫
R3
|f (x)|2 dx

) 1
2
.

Then conservation of energy is due to the formal identity

1
2‖u(t)‖2

L2 +

∫ t

0
‖∇u(t ′)‖2

L2 dt ′ =
1
2‖u0‖2

L2

thanks to the structure of the nonlinear term :
(
P(u · ∇u)|u

)
L2 = 0. So in

particular u ∈ L∞(R+; L2) and ∇u ∈ L2(R+; L2).

Isabelle Gallagher, Paris 7 On the incompressible Navier-Stokes equations



Fundamental properties of (NS)

• Scale invariance

If u(t, x) is a solution of (NS) associated with the initial data u0(x)
on [0,T ]× R3, then for all λ > 0, a ∈ R3

uλ(t, x) := λu(λ2t, λ(x − a))

is a solution associated with uλ,0(x) := λu0(λ(x − a)) on [0, λ−2T ]× R3.
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Weak solutions

Using the conservation of energy, one can prove the following result.

Theorem [Leray, 1934]

Let u0 ∈ L2(Rd ) be a divergence free vector field. There is a solution u
of (NS) satisfying for all t ≥ 0

‖u(t)‖2
L2 + 2

∫ t

0
‖∇u(t ′)‖2

L2 dt ′ ≤ ‖u0‖2
L2 .

Remarks :
I Proof by compactness.

I Search for conditions on the initial data to guarantee uniqueness (if
d = 2, OK due to scale invariance).
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Strong solutions

One does not use the structure of the equation, but rather its scale
invariance, by a fixed point method.

Solving (NS) is equivalent to solving

u = et∆u0 + B(u, u)

where et∆ is the heat semi-group on Rd and B the bilinear form

B(u, u)(t) := −
∫ t

0
e(t−t′)∆P div (u ⊗ u)(t ′) dt ′ .

The problem consists in finding an adapted Banach space X , such
that B is continuous from X × X to X .
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An existence and uniqueness result

Theorem
Let X be an adapted space. If u0 is such that ‖et∆u0‖X is small enough,
then there is a unique solution to (NS) in X .

Proof : This is simply Picard’s theorem : if X is a Banach space
and B ∈ B(X ), then for all x0 in X satisfying ‖x0‖X <

1
4‖B‖B(X)

the

equation
x = x0 + B(x , x)

has a unique solution in the ball centered at 0 and of radius 1
2‖B‖B(X)

·

Remark : By scale invariance, the norm on X must satisfy

∀λ > 0 ,∀x ∈ R3 , λ‖f (λ2t, λ(x − a))‖X ∼ ‖f ‖X

Isabelle Gallagher, Paris 7 On the incompressible Navier-Stokes equations



The optimal adapted space

Define
‖u0‖Bp := sup

t>0
t

1
2 (1− d

p )‖et∆u0‖Lp .

• Any Banach space of tempered distributions, scale and translation
invariant, is embedded in B∞ [Meyer ‘96]

• (NS) is ill-posed in B∞ [Bourgain-Pavlovic ‘08, Germain ‘08]

• (NS) is well-posed (for small enough data) in B̃∞ where

‖u0‖B̃∞
:= sup

t≥0
t 1

2 ‖et∆u0‖L∞ + sup
x∈R3

R>0

1
R 3

2

(∫
P(x ,R)

|(et∆u0)(t, y)|2dy
) 1

2

[Koch-Tataru ‘01]
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Remarks

• Previous results in this framework are due to Leray ‘34 (smallness
measured by ‖u0‖L2‖∇u0‖L2 if d = 3), Fujita-Kato ‘64 (with ‖u0‖Ḣ

d
2−1),

Kato ‘84 (with ‖u0‖Ld ), Cannone-Meyer-Planchon ‘94 (with ‖u0‖Bp ).

• In this context in general, only small data or small time theorems are
known. They hold for the more general equation

∂tu −∆u = Q(u, u)

where Q(v ,w) :=
∑

1≤j,k≤3
Qj,k(D)(v jwk) and Qj,k(D) are smooth

homogeneous Fourier multipliers of order 1.
However some of these equations are known to blow-up
[Montgomery-Smith ‘01], including for (large) data for which Navier-Stokes
does not [G-Paicu ‘09].
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Remarks

• Unfortunately there is a discrepancy between the energy (providing
control of norms) and the scaling (necessary to implement the fixed
point).

If d = 2, the energy space scale invariant, the equation is said critical.
In dimension d ≥ 3, there are d/2− 1 derivatives between scaling and
energy : the equation is said supercritical.
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Properties of G

In the following we denote by G the space of initial data generating a
global smooth solution to the three-dimensional Navier-Stokes
equations.
We want to study geometrical properties of G.
We shall prove that G is

• open (strong topology) [G-Iftimie-Planchon ‘03]

• connected in Ḣ 1
2 , Bp [G-Iftimie-Planchon ‘03], BMO−1 [Auscher,

Dubois, Tchamitchian ‘04]

• unbounded in B∞ [Chemin-G ‘06,‘09,‘10, Chemin-G-Paicu ‘12,
Chemin-G-Zhang ‘12]

• open (weak topology) (under an anisotropy assumption)
[Bahouri-G ‘12, Bahouri-Chemin-G in progress].
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The set G is strongly open, and connected

Let us prove the following result.

Theorem [G-Iftimie-Planchon ‘03]

Let u ∈ C(R+, Ḣ 1
2 (R3)) be a solution to (NS). Then

lim
t→+∞

‖u(t)‖
Ḣ

1
2 (R3)

= 0 .

Moreover u is stable in the sense that there is ε > 0 such that if
‖u|t=0 − v0‖Ḣ

1
2 (R3)

≤ ε then there is a unique global solution associated
with v0.

Remarks.
• The same result holds in the more general framework of BMO−1

[Auscher, Dubois, Tchamitchian ‘04].

• The result shows that G is open in the strong topology. An immediate
corollary of the theorem is that G is connected.
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Idea of the proof of the result (large time behaviour)

An easy case : assume u0 := u|t=0 ∈ L2 ∩ Ḣ 1
2 (R3). Then u satisfies the

energy inequality and in particular u ∈ L4(R+; Ḣ 1
2 (R3)) so there is t0

such that ‖u(t0)‖
Ḣ

1
2 (R3)

≤ ε0 and then that holds for all t ≥ t0 by small
data theory.

The general case : write u0 = v0 + w0 with w0 small in Ḣ 1
2 (R3) and v0

in L2(R3).

Solve (NS) globally with the data w0, the solution w(t) remains small
in Ḣ 1

2 (R3) for all times.

Prove that the solution of

∂tv + P(−v · ∇v + v · ∇w + w · ∇v)−∆v = 0

is bounded in the energy space and conclude as above.
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The set G is weakly open
We consider sequences converging weakly to an element of G.

Examples : the sequence φn(x) := 2nφ(2nx) converges weakly to zero.
If G were open for the weak topology then φ would belong to G by scale
invariance... The same goes for φ̃n(x) := φ(x − xn), |xn| → ∞.

Define ∆h
k and ∆v

j Littlewood-Paley frequency truncation operators :

F(∆h
k f )(ξ) := ϕ(2−kξ1, 2−kξ2, ξ3)F(f )(ξ) ,

F(∆v
j f )(ξ) := ϕ(ξ1, ξ2, 2−jξ3)F(f )(ξ)

where ϕ ∈ C∞c ( 1
2 , 1). Notice that

‖∆h
k∂1f ‖Lp ∼ 2k‖∆h

k f ‖Lp .

Then consider the norm ‖f ‖B1
q

:=
(∑

j,k
2(j+k)q‖∆h

k∆v
j f ‖q

L1(R3)

) 1
q
.

Remark : scale invariance of (NS).

Isabelle Gallagher, Paris 7 On the incompressible Navier-Stokes equations



The set G is weakly open

Definition
Let 0 < q ≤ ∞ be given. We say that a sequence (fn)n∈N, bounded
in B1

q, is anisotropically oscillating if the following property holds : for
all sequences (kn, jn),

lim sup
n→∞

2jn+kn‖∆h
kn

∆v
jn fn‖L1 = C > 0 =⇒ lim

n→∞
|jn − kn| =∞ .

Example : the sequence

φn(x) := 2αnφ(2αnx1, 2αnx2, 2βnx3) , α 6= β

is anisotropically oscillating : horizontal frequencies ∼ 2αn and vertical
frequencies ∼ 2βn so

lim sup
n→∞

2jn+kn‖∆h
kn

∆v
jnφn‖L1 = C > 0 =⇒ kn ∼ αn , jn ∼ βn .
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The set G is weakly open

Theorem [Bahouri-G ‘12, Bahouri-Chemin-G in progress]

Let q ∈]0, 1[ be given and let (u0,n)n∈N be a sequence of divergence free
vector fields bounded in B1

q, converging towards u0 ∈ B1
q in the sense of

distributions, with u0 ∈ G. If u0 − (u0,n)n∈N is anisotropically oscillating,
then up to extracting a subsequence, u0,n ∈ G for all n ∈ N.

Remarks.
• One can essentially consider any bounded sequence except for
sequences of the type described above and their superpositions.

• The theorem may be generalized by adding two more sequences
to (u0,n)n∈N, where in each additional sequence the “privileged” direction
is not x3 but x1 or x2.

• The same result holds for data not in G, on some life span [0,T ] for
T < T ?.
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The rest of the talk is devoted to a sketch of the proof of this result.

1 Write down an “anisotropic profile decomposition” of the
sequence of initial data. This allows to replace the sequence of initial
data, up to an arbitrarily small remainder term, by a finite (but
large) sum of profiles of the type

1
λn

Φ
( x1
λn

,
x2
λn

,
hnx3
λn

)
hn → 0 .

2 Propagate globally in time by (NS) each individual profile of the
decomposition.

3 Prove that the construction of the previous step does provide, after
superposition of all the global solutions, an approximate solution
to the Navier-Stokes equations.

Before carrying out that program we shall discuss an example of the
type above.
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A (typical) example

Consider the divergence-free initial data

Φ0,n(x) :=
1
λn

(Φ1
0,Φ

2
0, 0)

( x1
λn

,
x2
λn

,
hnx3
λn

)
, hn → 0 .

Up to rescaling by λn it is equivalent to study

Φ̃h
0,n(x) := Φh

0
(
xh, hnx3

)
, xh := (x1, x2) , Φh

0 := (Φ1
0,Φ

2
0) .
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A (typical) example

Let

Φ̃h
0,n(x) := Φh

0
(
xh, hnx3

)
, xh := (x1, x2) , Φh

0 := (Φ1
0,Φ

2
0) .

To prove there is a unique global solution to (NS) associated with Φ̃h
0,n

for n large enough [Chemin-G ‘10], we start by solving globally the two
dimensional equations with data Φh

0(xh, y3) for each y3. We denote by
Φh(t, xh, y3) the solution.

Then we check that (Φh, 0)(t, xh, hnx3) is a global approximate solution
to (NS) with data Φ̃0,n, so by rescaling, a global approximate solution
associated with Φ0,n is

Φn(t, x) :=
1
λn

(Φh, 0)
( t
λ2

n
,

xh
λn

,
hnx3
λn

)
.
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Another (typical) example

In the previous example

Φ0,n(x) :=
1
λn

(Φ1
0,Φ

2
0, 0)

( x1
λn

,
x2
λn

,
hnx3
λn

)
, hn → 0 ,

we had Φh
0,n ⇀ 0 if λn → 0 or ∞ and Φh

0,n(x) ⇀ Φh
0(xh, 0) if λn ≡ 1 .

Consider now the divergence-free initial data

u0,n := u0 + (Φh
0, 0)

(
x1, x2, hnx3

)
,

with u0 ∈ G. We assume that u0,n ⇀ u0 so (Φh
0, 0)(xh, 0) ≡ 0 .

We know there is a global solution to (NS) associated with Φ0,n,
denoted Φn, and we call u the global solution associated with u0. We
want to prove that u + Φn is a global, approximate solution to (NS).
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Another (typical) example

Since (Φh
0, 0)(xh, 0) ≡ 0, then Φn(t, xh, 0) ∼ 0 so up to a small error, the

support in x3 of Φn is ∼ h−1
n →∞.

Approximating u by a compactly supported vector field we find that the
supports of u and Φn are asymptotically disjoint, so the two vector fields
do not interact.

That ends the proof in this model case.
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