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Presentation of the equations
e Viscous, incompressible, homogeneous fluid, in R3

e Velocity u = (ut, u?, u®)(t, x), pressure p(t,x)

(Ns) {8tu+u~VUdi€Z;0Vp
with
3 , . 3 ' P 9
Au:;aju, d.vu:;ajw, aj:zaxj, Oei= 5

3 3
u-Vu= Zujaju = Zaj(tﬂu).
j=1 j=1

Remark : The pressure can be eliminated by projection onto
divergence-free vector fields : P = Id — VA~ div.

Cauchy data : u;—o = uo.
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Solving the equations

We want to find u(t, x) solution to (NS) in some sense (distributional,
classical...), such that u(0, x) = up(x).

Standard methods :
e Compactness methods :
- Find an a priori bound on the solution : ||u(t)||x < C(uo);

- Construct a sequence of approximate equations (NS), which can be
solved by the Cauchy-Lipschitz theorem : this yields a sequence of
approximate solutions (up)nen, uniformly bounded in X;

- Use the uniform bound in X to construct weak limit points to the
sequence (Up)peN : Up — U;

- Use space-time compactness to prove that u solves (NS).
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Solving the equations

e Banach fixed point theorem :

- Write the equation in integral form :

u(t) = e"®u(0) + B(u, u)(t)

- Apply a fixed point theorem.
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Fundamental properties of (NS)

e Conservation of the energy

Il = ([ 1P ax)

Then conservation of energy is due to the formal identity

Define

1 't 1
o) + [ 17U = 5ol

thanks to the structure of the nonlinear term : (P(u- Vu)|u),, = 0. So in
particular u € L°(RT; L2) and Vu € L*(R*; [?).
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Fundamental properties of (NS)

e Scale invariance

If u(t,x) is a solution of (NS) associated with the initial data up(x)
on [0, T] x R3, then for all A >0, a € R3

un(t, x) == Au(N2t, \(x — a))

is a solution associated with uy o(x) := Aug(A(x — a)) on [0, A2 T] x R3.
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Weak solutions

Using the conservation of energy, one can prove the following result.

Theorem [Leray, 1934]

Let up € L?(RY) be a divergence free vector field. There is a solution u
of (NS) satisfying for all t >0

t
(@l +2 [ 1u(e)]Es d’ < Janl.
0

Remarks :
» Proof by compactness.

» Search for conditions on the initial data to guarantee uniqueness (if
d =2, OK due to scale invariance).
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Strong solutions

One does not use the structure of the equation, but rather its scale
invariance, by a fixed point method.

Solving (NS) is equivalent to solving
u=euy+B(u,u)
where e® is the heat semi-group on R? and B the bilinear form

B(u, u)(t) := — /Ot e AP div (u @ u)(t') dt’ .

The problem consists in finding an adapted Banach space X, such
that B is continuous from X x X to X.
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An existence and uniqueness result

Theorem

Let X be an adapted space. If up is such that [|e*®u| x is small enough,
then there is a unique solution to (NS) in X.

Proof : This is simply Picard’s theorem : if X is a Banach space

and B € B(X), then for all xp in X satisfying ||xo||x < -7 the
4Bl 5(x)
equation
x = xp + B(x, x)
has a unique solution in the ball centered at 0 and of radius ———
2||Bll5(x)

Remark : By scale invariance, the norm on X must satisfy

VYA >0,Vx € R3,  \|F(N%t, A(x — a))|lx ~ [|f]lx
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The optimal adapted space

Define

%(17%)“61‘A

uollg, :=sup t o[ e -
t>0

e Any Banach space of tempered distributions, scale and translation
invariant, is embedded in B, [Meyer ‘96]

e (NS) is ill-posed in B, [Bourgain-Pavlovic ‘08, Germain '08]
o (NS) is well-posed (for small enough data) in B, where

1

1 1 " 3
Joolls, = sup e Bunlu + sup, ([ [(eBu)(tiy)ey)
< >0 xer? R2 NJp(x,R)
R>0

[Koch-Tataru ‘01]
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Remarks

e Previous results in this framework are due to Leray ‘34 (smallness
measured by ||uol| 2|V wol| 2 if d = 3), Fujita-Kato ‘64 (with HuoHHg,l),
Kato ‘84 (with [|ugl[,¢), Cannone-Meyer-Planchon ‘94 (with [|uo||s,).

e In this context in general, only small data or small time theorems are
known. They hold for the more general equation

Oru — Au = Q(u, u)

where Q(v, w) Z Qj x( ) and Q; x(D) are smooth

1<j,k<3
homogeneous Fourier multipliers of order 1.
However some of these equations are known to blow-up
[Montgomery-Smith ‘01], including for (large) data for which Navier-Stokes
does not [G-Paicu '09].
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Remarks

e Unfortunately there is a discrepancy between the energy (providing
control of norms) and the scaling (necessary to implement the fixed
point).

If d = 2, the energy space scale invariant, the equation is said critical.
In dimension d > 3, there are d/2 — 1 derivatives between scaling and
energy : the equation is said supercritical.
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Properties of G

In the following we denote by G the space of initial data generating a
global smooth solution to the three-dimensional Navier-Stokes
equations.

We want to study geometrical properties of G.
We shall prove that G is

e open (strong topology) [G-Iftimie-Planchon ‘03]

o connected in H?, B, [G-Iftimie-Planchon ‘03], BMO ™! [Auscher,
Dubois, Tchamitchian ‘04]

e unbounded in B, [Chemin-G '06,'09,10, Chemin-G-Paicu ‘12,
Chemin-G-Zhang ‘12]

e open (weak topology) (under an anisotropy assumption)
[Bahouri-G ‘12, Bahouri-Chemin-G in progress].
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The set G is strongly open, and connected

Let us prove the following result.

Theorem [G-Iftimie-Planchon ‘03]
Let u € C(R*, H2(R?)) be a solution to (NS). Then

t_ll_Toc ||u(t)HH%(]R3) =0.

Moreover u is stable in the sense that there is € > 0 such that if

| uje=0 — VOHH%(R3) < ¢ then there is a unique global solution associated

with vg.

Remarks.
e The same result holds in the more general framework of BMO~1
[Auscher, Dubois, Tchamitchian ‘04].

e The result shows that G is open in the strong topology. An immediate
corollary of the theorem is that G is connected.
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|dea of the proof of the result (large time behaviour)

An easy case : assume ug := uj;—g € L2 N Hz(R3). Then u satisfies the
energy inequality and in particular u € L*(R™; Hz (R3)) so there is to

such that ||u(t0)HH%(R3) < g and then that holds for all t > t; by small
data theory.

The general case : write up = vy + wy with wy small in H%(R3) and vy
in L2(R3).

Solve (NS) globally with the data wp, the solution w(t) remains small
in Hz(R3) for all times.

Prove that the solution of
Ov+P(—v-Vv+v-Vw+w-Vv)—Av =0

is bounded in the energy space and conclude as above.
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The set G is weakly open

We consider sequences converging weakly to an element of G.

Examples : the sequence ¢,(x) := 2"$(2"x) converges weakly to zero.
If G were open for the weak topology then ¢ would belong to G by scale
invariance... The same goes for ¢,(x) := ¢(x — x,), |Xa| = 0.

Define Al and Ay Littlewood-Paley frequency truncation operators :
F(DRF)(E) = (27 61,276, &) F(F)(€),

F(ALF)(E) = (&1, &.277&) F(F)(€)
where ¢ € C°(3,1). Notice that

1A% F|o ~ 24| ARF o -

1
Then consider the norm |[|f||s: := (22(j+k)q||A2AJ‘-’fH‘ZI(R3)> ‘.
Jok
Remark : scale invariance of (NS).
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The set G is weakly open

Definition
Let 0 < g < co be given. We say that a sequence (7,)nen, bounded

in B}], is anisotropically oscillating if the following property holds : for
all sequences (kn, Jjin),

lim sup 2Jn+ko
n—o0

A A flln=C>0 = lim |j— kn| =o0.
n—oo

Example : the sequence
Dn(x) 1= 2"(2"x1,2""x2,2°"x3) , o # 3

is anisotropically oscillating : horizontal frequencies ~ 2%" and vertical
frequencies ~ 29" so

limsup 2j"+k"||AZ"Aj"n¢,,||L1 =C>0 = k,~an, j,~fn.

n— o0
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The set G is weakly open

Theorem [Bahouri-G ‘12, Bahouri-Chemin-G in progress]

Let g €]0, 1] be given and let (ug n)nen be a sequence of divergence free
vector fields bounded in Bé, converging towards ug € Bcll in the sense of
distributions, with ug € G. If ug — (uo,n)nen is anisotropically oscillating,
then up to extracting a subsequence, ug , € G for all n € N.

Remarks.
e One can essentially consider any bounded sequence except for
sequences of the type described above and their superpositions.

e The theorem may be generalized by adding two more sequences
to (uo,n)nen, Where in each additional sequence the “privileged” direction
is not x3 but x; or x».

e The same result holds for data not in G, on some life span [0, T] for
T<T"
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The rest of the talk is devoted to a sketch of the proof of this result.

@ Write down an “anisotropic profile decomposition” of the
sequence of initial data. This allows to replace the sequence of initial
data, up to an arbitrarily small remainder term, by a finite (but
large) sum of profiles of the type

1 (ﬁ X2 h"X3)
YD VLS VLD

h, — 0.

@® Propagate globally in time by (NS) each individual profile of the
decomposition.

© Prove that the construction of the previous step does provide, after
superposition of all the global solutions, an approximate solution
to the Navier-Stokes equations.

Before carrying out that program we shall discuss an example of the
type above.
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A (typical) example

Consider the divergence-free initial data

1 X1 X2 hnX3
®o.n(x) = )\—(CD}),d)S,O)(— = ),

he = 0.
NN A —0

Up to rescaling by A, it is equivalent to study

CT)gm(x) = <1>g(xh, h,,X3) , o xp o= (x1, %), <Dg = (¢é,¢%).
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A (typical) example

Let
5g7n(x) = CI)g(xh, h,,X3) , o xp = (xa, %), Cbg = (Cb(l,,d)%).

To prove there is a unique global solution to (NS) associated with 687,,
for n large enough [Chemin-G ‘10], we start by solving globally the two
dimensional equations with data ®(x, y3) for each y;. We denote by
®"(t, xp, y3) the solution.

Then we check that (®",0)(t, xs, h,x3) is a global approximate solution
to (NS) with data ®g ,, so by rescaling, a global approximate solution
associated with ®g , is

&, (t.x) = —(oF,0)(5 2

An IV A VDY

Isabelle Gallagher, Paris 7 On the incompressible Navier-Stokes equations



Another (typical) example

In the previous example

X1 X2 hpx3 )
9

A A A

1
®o.n(x) = 7(%’ $3,0)( h, — 0,

we had d)g’n —0if A\, = 0 or oo and d)g,n(x) — ®h(xp,0)if N, =1 .
Consider now the divergence-free initial data
Uo,n 1= Up + (<Dg, 0)(X1,X2, h,,X3) ,
with up € G. We assume that ug , — ug so (®f,0)(x4,0) =0 .
We know there is a global solution to (NS) associated with ®g ,,

denoted @, and we call u the global solution associated with uy. We
want to prove that u + ®, is a global, approximate solution to (NS).
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Another (typical) example

Since (®f,0)(xn,0) =0, then ®,(t, x5, 0) ~ 0 so up to a small error, the
support in x3 of ®, is ~ h-1 — co.

Approximating u by a compactly supported vector field we find that the
supports of u and ®,, are asymptotically disjoint, so the two vector fields

do not interact.

That ends the proof in this model case.
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