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Introduction

Object of study: KPZ equation of surface growth:
Oth = O2h + MN(9,h)* + € — 0

with either x € R or € S!, and £ is space-time white noise.
1. Universal model for interface fluctuations. (Shown rigorously
only for SOS model, see Bertini-Giacomin 1997.)
2. Free energy for polymer models.
3. Scaling limit of time-dependent parabolic Anderson model.
4. Universal object describing crossover from Edwards-Wilkinson
to KPZ.
Problem: Right-hand side is badly ill-posed! (Solutions only C*
for a < 1)
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Simplest possible model of surface growth. Surface modelled by
graph with slope +1:

Dynamic:
1+2

N AN

1—e
Theorem (Bertini & Giacomin, 1997): aéh(f, L) —e!
converges to KPZ.
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Trick introduced by Cole and Hopf in the 50's. Write
h=X\1'logZ,

then Z solves
dZ = 02Z dt + \Z dW . (%)

Idea: Take this as definition of solution, where (x) is interpreted in
the It6 sense. Work by Bertini-Giacomin shows that this is the
physically relevant solution.

Write h = Sc i (ho,w), taking values in C(R4,C).
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Mollify W, so W, 1, = p(ck)W}, for cutoff ¢, and set
dZ. = 02 Z.dt + \Z.dW., h.=\"1logZ. .

Then h, solves
1
8ths = 8§h5 + A((aa:hs)Q - CE) + 56 ' Ce ~ /902 :

Problems with this notion of solution:
1. Not satisfactory at the formal level.

2. Lack of robustness: no good approximation theory for other
modifications (hyperviscosity, time-smoothing, etc).

3. Properties of solutions do not always transform well
(regularity of difference for example).
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Some attempts

. Consider product as Wick product 9,h ¢ 0,h (@ksendal & Al
1995): wrong notion of solution (# Scxr). Also wrong scaling
properties (Chan 2000).

. Formulate as martingale problem (Assing 2002): no
well-posedness, “generator” not shown to be closable.

. Apply “standard” renormalisation techniques inspired by QFT
(Da Prato, Debussche, Tubaro 2007): only works for a
regularised equation.

. Define nonlinearity on some distributional space (Gongalves,
Jara 2010, Assing 2011): no uniqueness. No characterisation
of class of distributions for which formulation even makes
sense.



A robustness result

Theorem (H. 2011): For o > 0 arbitrary one can build the
following objects:
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O x Co ooH, C(R4+,C?%)

where Sp is jointly continuous, but ¥ is only measurable. (Slight
cheat: solutions are only local in general.)
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Theorem (H. 2011): For o > 0 arbitrary one can build the
following objects:

SR
x x oo —E, eRy,co)

N

O x Co ooH, C(R4+,C?%)

where Sp is jointly continuous, but ¥ is only measurable. (Slight
cheat: solutions are only local in general.)

Extends the Cole-Hopf solution to a much larger class of input
noises in a robust way!
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A deterministic result

Consider solutions A, to
Ohe = O%he 4+ (8,he)? + 73 2g(e e — e 2) — K.,

for centred periodic g and suitable large constants K.. Then, one
can compute K such that h. — h solving

Oth = 02h 4 (0zh)* + KOh .

Proof: Just show that W(g.) converges to a limit in X...
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Ideas of technique

Idea: Perform Wild expansion of solution: define
OY? = Y +&c .
For any binary tree 7 = [11, 7o), define Y recursively by
QYT =02V 4+ 0, Y 0, Y — CT .
Formal calculation shows that

he(t) = S ATV (1),

provided that )" _C7 = C..



A convergence result

Theorem: For every 7, there is a choice of o and C] such that
Y -Y7 (Independent of ¢.)

in probability in C(R,C%) N CP(R,C) for a < a;, and f < %

Optimal choice: a, = % ay =1, ar = (ar Nag,) + 1.

c;’=05~1/ ©?(z) dz
R

3

47
oY = ﬁllogél —C(yp) ,

= -1c¥.
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Truncated expansion
Idea: Write h, as

he = Z )\|T‘*1Y:’ + U, ,
TET

for a finite set T, derive an equation for u., and pass to limit.
Minimal working choice: 7 = {.,v,¥,¥,%}. One obtains

Apue = O2ue + 20 pue Y2 + Lot .
Would like to make sense of

Oyu = 8§u 42X 0,u 0. Y" .



Truncated expansion
Idea: Write h, as

he = Z )\|T‘*1Y:’ + U, ,
TET

for a finite set T, derive an equation for u., and pass to limit.
Minimal working choice: 7 = {.,v,¥,¥,%}. One obtains

Ayue = Due + 20 Dpue 0, Y + “lot.” .
Would like to make sense of
Oyu = (ﬁu 42X 0,u 0. Y" .

“Theorem:” There exists no pair of Banach spaces containing u
and Y such that the right-hand side makes sense. (Very different
from DiPerna - Lions, closer to Flandoli - Russo.)
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How to solve that equation?

Writing v = O, u, recall we want to solve
O = 020 +2X 0, (v0,Y") .

If v were constant on the right hand side, then one would expect v
to “look locally like" 2 \v®, where

OH® = 020 + 92V .

Idea: Set up fixed point argument in space of functions that “look
like " and use the fact that one can define ® 9, Y “by hand".

Resulting space is a non-linear algebraic variety embedded in a
larger Banach space. Uses controlled rough paths a la
Gubinelli-Lyons.
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Conclusions

Take-away message: Nonlinear spaces are required to solve some
rough equations pathwise.
Some open problems:

e Extension to x € R?

e Convergence of microscopic models (for example lattice KPZ)
to KPZ. See work with J. Maas and H. Weber.

e Extension to other equations in similar class.

Rough equations in higher dimensions?



