Solving the KPZ equation

M. Hairer

University of Warwick

ECM 2012, Kraków

Introduction

Object of study: KPZ equation of surface growth:

$$\partial_t h = \partial_x^2 h + \lambda (\partial_x h)^2 + \xi - \infty$$

with either $x \in \mathbf{R}$ or $x \in S^1$, and ξ is space-time white noise.

- 1. Universal model for interface fluctuations. (Shown rigorously only for SOS model, see Bertini-Giacomin 1997.)
- 2. Free energy for polymer models.
- 3. Scaling limit of time-dependent parabolic Anderson model.
- 4. Universal object describing crossover from Edwards-Wilkinson to KPZ.

Problem: Right-hand side is badly ill-posed! (Solutions only C^{α} for $\alpha < \frac{1}{2}!!$)

Introduction

Object of study: KPZ equation of surface growth:

$$\partial_t h = \partial_x^2 h + \lambda (\partial_x h)^2 + \xi - \infty$$

with either $x \in \mathbf{R}$ or $x \in S^1$, and ξ is space-time white noise.

- 1. Universal model for interface fluctuations. (Shown rigorously only for SOS model, see Bertini-Giacomin 1997.)
- 2. Free energy for polymer models.
- 3. Scaling limit of time-dependent parabolic Anderson model.
- 4. Universal object describing crossover from Edwards-Wilkinson to KPZ.

Problem: Right-hand side is badly ill-posed! (Solutions only C^{α} for $\alpha < \frac{1}{2}!!$)

Introduction

Object of study: KPZ equation of surface growth:

$$\partial_t h = \partial_x^2 h + \lambda (\partial_x h)^2 + \xi - \infty$$

with either $x \in \mathbf{R}$ or $x \in S^1$, and ξ is space-time white noise.

- 1. Universal model for interface fluctuations. (Shown rigorously only for SOS model, see Bertini-Giacomin 1997.)
- 2. Free energy for polymer models.
- 3. Scaling limit of time-dependent parabolic Anderson model.
- 4. Universal object describing crossover from Edwards-Wilkinson to KPZ.

Problem: Right-hand side is badly ill-posed! (Solutions only C^{α} for $\alpha < \frac{1}{2}!!$)

The SOS model

Simplest possible model of surface growth. Surface modelled by graph with slope $\pm 1{:}$

Dynamic:

Theorem (Bertini & Giacomin, 1997): $\varepsilon^{\frac{1}{2}}h(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^2}) - \varepsilon^{-1}$ converges to KPZ.

The SOS model

Simplest possible model of surface growth. Surface modelled by graph with slope $\pm 1{:}$

Theorem (Bertini & Giacomin, 1997): $\varepsilon^{\frac{1}{2}}h(\frac{x}{\varepsilon},\frac{t}{\varepsilon^2}) - \varepsilon^{-1}$ converges to KPZ.

The SOS model

Simplest possible model of surface growth. Surface modelled by graph with slope $\pm 1{:}$

Theorem (Bertini & Giacomin, 1997): $\varepsilon^{\frac{1}{2}}h(\frac{x}{\varepsilon}, \frac{t}{\varepsilon^2}) - \varepsilon^{-1}$ converges to KPZ.

Cole-Hopf solution

Trick introduced by Cole and Hopf in the 50's. Write

$$h = \lambda^{-1} \log Z$$
 ,

then Z solves

$$\partial_t Z = \partial_x^2 Z + \lambda Z \,\xi \,. \tag{(\star)}$$

Idea: Take this as definition of solution, where (*) is interpreted in the Itô sense. Work by Bertini-Giacomin shows that this is the physically relevant solution.

Write $h = S_{CH}(h_0, \omega)$, taking values in $C(\mathbf{R}_+, C)$.

Cole-Hopf solution

Trick introduced by Cole and Hopf in the 50's. Write

$$h = \lambda^{-1} \log Z$$
 ,

then Z solves

$$dZ = \partial_x^2 Z \, dt + \lambda Z \, dW \; . \tag{(\star)}$$

Idea: Take this as definition of solution, where (*) is interpreted in the Itô sense. Work by Bertini-Giacomin shows that this is the physically relevant solution.

Write $h = S_{CH}(h_0, \omega)$, taking values in $C(\mathbf{R}_+, C)$.

Cole-Hopf solution

Trick introduced by Cole and Hopf in the 50's. Write

$$h = \lambda^{-1} \log Z$$
 ,

then Z solves

$$dZ = \partial_x^2 Z \, dt + \lambda Z \, dW \; . \tag{(\star)}$$

Idea: Take this as definition of solution, where (*) is interpreted in the Itô sense. Work by Bertini-Giacomin shows that this is the physically relevant solution.

Write $h = S_{CH}(h_0, \omega)$, taking values in $C(\mathbf{R}_+, C)$.

Properties of Cole-Hopf

Mollify W, so $W_{\varepsilon,k} = \varphi(\varepsilon k) W_k$ for cutoff φ , and set

$$dZ_{\varepsilon} = \partial_x^2 Z_{\varepsilon} \, dt + \lambda Z_{\varepsilon} \, dW_{\varepsilon}$$
, $h_{\varepsilon} = \lambda^{-1} \, \log Z_{\varepsilon}$.

Then h_{ε} solves

$$\partial_t h_{\varepsilon} = \partial_x^2 h_{\varepsilon} + \lambda \left((\partial_x h_{\varepsilon})^2 - C_{\varepsilon} \right) + \xi_{\varepsilon} , \quad C_{\varepsilon} \approx \frac{1}{\varepsilon} \int \varphi^2 .$$

Problems with this notion of solution:

- 1. Not satisfactory at the formal level.
- 2. Lack of robustness: no good approximation theory for other modifications (hyperviscosity, time-smoothing, etc).
- 3. Properties of solutions do not always transform well (regularity of difference for example).

Properties of Cole-Hopf

Mollify W, so $W_{\varepsilon,k} = \varphi(\varepsilon k) W_k$ for cutoff φ , and set

$$dZ_{\varepsilon} = \partial_x^2 Z_{\varepsilon} \, dt + \lambda Z_{\varepsilon} \, dW_{\varepsilon}$$
, $h_{\varepsilon} = \lambda^{-1} \, \log Z_{\varepsilon}$.

Then h_{ε} solves

$$\partial_t h_{arepsilon} = \partial_x^2 h_{arepsilon} + \lambda ig((\partial_x h_{arepsilon})^2 - C_{arepsilon} ig) + \xi_{arepsilon}$$
 , $C_{arepsilon} pprox rac{1}{arepsilon} \int arphi^2 \, dx$

Problems with this notion of solution:

- 1. Not satisfactory at the formal level.
- 2. Lack of robustness: no good approximation theory for other modifications (hyperviscosity, time-smoothing, etc).
- 3. Properties of solutions do not always transform well (regularity of difference for example).

- 1. Consider product as Wick product $\partial_x h \diamond \partial_x h$ (Øksendal & Al 1995): wrong notion of solution ($\neq S_{CH}$). Also wrong scaling properties (Chan 2000).
- 2. Formulate as martingale problem (Assing 2002): no well-posedness, "generator" not shown to be closable.
- Apply "standard" renormalisation techniques inspired by QFT (Da Prato, Debussche, Tubaro 2007): only works for a regularised equation.
- Define nonlinearity on some distributional space (Gonçalves, Jara 2010, Assing 2011): no uniqueness. No characterisation of class of distributions for which formulation even makes sense.

- 1. Consider product as Wick product $\partial_x h \diamond \partial_x h$ (Øksendal & Al 1995): wrong notion of solution ($\neq S_{CH}$). Also wrong scaling properties (Chan 2000).
- 2. Formulate as martingale problem (Assing 2002): no well-posedness, "generator" not shown to be closable.
- Apply "standard" renormalisation techniques inspired by QFT (Da Prato, Debussche, Tubaro 2007): only works for a regularised equation.
- Define nonlinearity on some distributional space (Gonçalves, Jara 2010, Assing 2011): no uniqueness. No characterisation of class of distributions for which formulation even makes sense.

- 1. Consider product as Wick product $\partial_x h \diamond \partial_x h$ (Øksendal & Al 1995): wrong notion of solution ($\neq S_{CH}$). Also wrong scaling properties (Chan 2000).
- 2. Formulate as martingale problem (Assing 2002): no well-posedness, "generator" not shown to be closable.
- Apply "standard" renormalisation techniques inspired by QFT (Da Prato, Debussche, Tubaro 2007): only works for a regularised equation.
- Define nonlinearity on some distributional space (Gonçalves, Jara 2010, Assing 2011): no uniqueness. No characterisation of class of distributions for which formulation even makes sense.

- 1. Consider product as Wick product $\partial_x h \diamond \partial_x h$ (Øksendal & Al 1995): wrong notion of solution ($\neq S_{CH}$). Also wrong scaling properties (Chan 2000).
- 2. Formulate as martingale problem (Assing 2002): no well-posedness, "generator" not shown to be closable.
- Apply "standard" renormalisation techniques inspired by QFT (Da Prato, Debussche, Tubaro 2007): only works for a regularised equation.
- 4. Define nonlinearity on some distributional space (Gonçalves, Jara 2010, Assing 2011): no uniqueness. No characterisation of class of distributions for which formulation even makes sense.

A robustness result

Theorem (H. 2011): For $\alpha > 0$ arbitrary one can build the following objects:

$$\begin{array}{c} \mathcal{X} \ \times \ \mathcal{C}^{\alpha} \xrightarrow{\mathcal{S}_{R}} \mathcal{C}(\mathbf{R}_{+}, \mathcal{C}^{\alpha}) \\ \Psi & \uparrow \qquad \uparrow \qquad \downarrow \\ \Omega \ \times \ \mathcal{C}^{\alpha} \xrightarrow{\mathcal{S}_{CH}} \mathcal{C}(\mathbf{R}_{+}, \mathcal{C}^{\alpha}) \end{array}$$

where S_R is jointly continuous, but Ψ is only measurable. (Slight cheat: solutions are only local in general.)

Extends the Cole-Hopf solution to a much larger class of input noises in a robust way!

A robustness result

Theorem (H. 2011): For $\alpha > 0$ arbitrary one can build the following objects:

$$\begin{array}{c} \mathcal{X} \times \mathcal{C}^{\alpha} \xrightarrow{\mathcal{S}_{R}} \mathcal{C}(\mathbf{R}_{+}, \mathcal{C}^{\alpha}) \\ \Psi \uparrow \qquad \uparrow \qquad \downarrow \\ \Omega \ \times \mathcal{C}^{\alpha} \xrightarrow{\mathcal{S}_{CH}} \mathcal{C}(\mathbf{R}_{+}, \mathcal{C}^{\alpha}) \end{array}$$

where S_R is jointly continuous, but Ψ is only measurable. (Slight cheat: solutions are only local in general.)

Extends the Cole-Hopf solution to a much larger class of input noises in a robust way!

A deterministic result

Consider solutions h_{ε} to

$$\partial_t h_\varepsilon = \partial_x^2 h_\varepsilon + (\partial_x h_\varepsilon)^2 + \varepsilon^{-3/2} g(\varepsilon^{-1} x - \varepsilon^{-2} t) - K_\varepsilon \ ,$$

for centred periodic g and suitable large constants K_{ε} . Then, one can compute K such that $h_{\varepsilon} \to h$ solving

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + K \partial_x h \; .$$

Proof: Just show that $\Psi(g_{\varepsilon})$ converges to a limit in \mathcal{X} ...

A deterministic result

Consider solutions h_{ε} to

$$\partial_t h_\varepsilon = \partial_x^2 h_\varepsilon + (\partial_x h_\varepsilon)^2 + \varepsilon^{-3/2} g(\varepsilon^{-1} x - \varepsilon^{-2} t) - K_\varepsilon \,\, ,$$

for centred periodic g and suitable large constants K_{ε} . Then, one can compute K such that $h_{\varepsilon} \to h$ solving

$$\partial_t h = \partial_x^2 h + (\partial_x h)^2 + K \partial_x h \; .$$

Proof: Just show that $\Psi(g_{\varepsilon})$ converges to a limit in \mathcal{X} ...

Ideas of technique

Idea: Perform Wild expansion of solution: define

$$\partial_t Y^{\bullet}_{\varepsilon} = \partial_x^2 Y^{\bullet}_{\varepsilon} + \xi_{\varepsilon}$$

For any binary tree $au = [au_1, au_2]$, define $Y_{arepsilon}^{ au}$ recursively by

$$\partial_t Y_{\varepsilon}^{\tau} = \partial_x^2 Y_{\varepsilon}^{\tau} + \partial_x Y_{\varepsilon}^{\tau_1} \, \partial_x Y_{\varepsilon}^{\tau_2} - C_{\varepsilon}^{\tau} \; .$$

Formal calculation shows that

$$h_arepsilon(t) = \sum_{ au} \lambda^{| au|-1} Y_arepsilon^{ au}(t)$$
 ,

provided that $\sum_{\tau} C_{\varepsilon}^{\tau} = C_{\varepsilon}$.

Ideas of technique

Idea: Perform Wild expansion of solution: define

$$\partial_t Y^{\bullet}_{\varepsilon} = \partial_x^2 Y^{\bullet}_{\varepsilon} + \xi_{\varepsilon}$$

For any binary tree $au = [au_1, au_2]$, define $Y_{arepsilon}^{ au}$ recursively by

$$\partial_t Y_{\varepsilon}^{\tau} = \partial_x^2 Y_{\varepsilon}^{\tau} + \partial_x Y_{\varepsilon}^{\tau_1} \partial_x Y_{\varepsilon}^{\tau_2} - C_{\varepsilon}^{\tau} .$$

Formal calculation shows that

$$h_arepsilon(t) = \sum_{ au} \lambda^{| au|-1} Y^{ au}_arepsilon(t)$$
 ,

provided that $\sum_{\tau} C_{\varepsilon}^{\tau} = C_{\varepsilon}$.

A convergence result

Theorem: For every $\tau,$ there is a choice of α_τ and C_ε^τ such that

$$Y_{\varepsilon}^{ au} o Y^{ au}$$
 (Independent of φ .)

in probability in $\mathcal{C}(\mathbf{R}, \mathcal{C}^{\alpha}) \cap \mathcal{C}^{\beta}(\mathbf{R}, \mathcal{C})$ for $\alpha < \alpha_{\tau}$ and $\beta < \frac{1}{2}$.

Optimal choice: $\alpha_{\bullet} = \frac{1}{2}$, $\alpha_{V} = 1$, $\alpha_{\tau} = (\alpha_{\tau_{1}} \wedge \alpha_{\tau_{2}}) + 1$.

$$\begin{split} C_{\varepsilon}^{\mathsf{V}} &= C_{\varepsilon} \sim \frac{1}{\varepsilon} \int_{\mathbf{R}} \varphi^2(x) \, dx \, ,\\ C_{\varepsilon}^{\mathsf{V}} &= \frac{4\pi}{\sqrt{3}} |\log \varepsilon| - C(\varphi) \, ,\\ C_{\varepsilon}^{\mathsf{V}} &= -\frac{1}{4} C_{\varepsilon}^{\mathsf{V}} \, . \end{split}$$

Truncated expansion

Idea: Write h_{ε} as

$$h_{\varepsilon} = \sum_{\tau \in \mathcal{T}} \lambda^{|\tau|-1} Y_{\varepsilon}^{\tau} + u_{\varepsilon}$$
 ,

for a finite set \mathcal{T} , derive an equation for u_{ε} , and pass to limit. Minimal working choice: $\mathcal{T} = \{\bullet, v, \forall, \forall\}$. One obtains

$$\partial_t u_\varepsilon = \partial_x^2 u_\varepsilon + 2\lambda \, \partial_x u_\varepsilon \, \partial_x Y_\varepsilon^{\bullet} + \text{``I.o.t.''} \, .$$

Would like to make sense of

$$\partial_t u = \partial_x^2 u + 2\lambda \,\partial_x u \,\partial_x Y^{\bullet} \,.$$

"Theorem:" There exists no pair of Banach spaces containing u and Y such that the right-hand side makes sense. (Very different from DiPerna - Lions, closer to Flandoli - Russo.)

Truncated expansion

Idea: Write h_{ε} as

$$h_{\varepsilon} = \sum_{\tau \in \mathcal{T}} \lambda^{|\tau|-1} Y_{\varepsilon}^{\tau} + u_{\varepsilon}$$
 ,

for a finite set \mathcal{T} , derive an equation for u_{ε} , and pass to limit. Minimal working choice: $\mathcal{T} = \{\bullet, v, \forall, \forall\}$. One obtains

$$\partial_t u_\varepsilon = \partial_x^2 u_\varepsilon + 2\lambda \, \partial_x u_\varepsilon \, \partial_x Y_\varepsilon^{\bullet} + \text{``I.o.t.''} \, .$$

Would like to make sense of

$$\partial_t u = \partial_x^2 u + 2\lambda \, \partial_x u \, \partial_x Y^{\bullet} \; .$$

"Theorem:" There exists no pair of Banach spaces containing u and Y^{\bullet} such that the right-hand side makes sense. (Very different from DiPerna - Lions, closer to Flandoli - Russo.)

How to solve that equation?

Writing $v = \partial_x u$, recall we want to solve

$$\partial_t v = \partial_x^2 v + 2\lambda \,\partial_x \big(v \,\partial_x Y^{\bullet} \big) \;.$$

If v were constant on the right hand side, then one would expect v to "look locally like" $2\lambda v\Phi$, where

$$\partial_t \Phi = \partial_x^2 \Phi + \partial_x^2 Y^{\bullet} \,.$$

Idea: Set up fixed point argument in space of functions that "look like Φ " and use the fact that one can define $\Phi \partial_x Y^{\bullet}$ "by hand".

Resulting space is a non-linear algebraic variety embedded in a larger Banach space. Uses controlled rough paths à la Gubinelli-Lyons.

How to solve that equation?

Writing $v = \partial_x u$, recall we want to solve

$$\partial_t v = \partial_x^2 v + 2\lambda \,\partial_x \big(v \,\partial_x Y^{\bullet} \big) \;.$$

If v were constant on the right hand side, then one would expect v to "look locally like" $2\lambda v\Phi$, where

$$\partial_t \Phi = \partial_x^2 \Phi + \partial_x^2 Y^{\bullet} \,.$$

Idea: Set up fixed point argument in space of functions that "look like Φ " and use the fact that one can define $\Phi \partial_x Y^{\bullet}$ "by hand".

Resulting space is a non-linear algebraic variety embedded in a larger Banach space. Uses controlled rough paths à la Gubinelli-Lyons.

How to solve that equation?

Writing $v = \partial_x u$, recall we want to solve

$$\partial_t v = \partial_x^2 v + 2\lambda \,\partial_x \big(v \,\partial_x Y^{\bullet} \big) \,.$$

If v were constant on the right hand side, then one would expect v to "look locally like" $2\lambda v\Phi$, where

$$\partial_t \Phi = \partial_x^2 \Phi + \partial_x^2 Y^{\bullet}$$

Idea: Set up fixed point argument in space of functions that "look like Φ " and use the fact that one can define $\Phi \partial_x Y^{\bullet}$ "by hand".

Resulting space is a non-linear algebraic variety embedded in a larger Banach space. Uses controlled rough paths à la Gubinelli-Lyons.

Take-away message: Nonlinear spaces are required to solve some rough equations pathwise.

- Extension to $x \in \mathbf{R}$?
- Convergence of microscopic models (for example lattice KPZ) to KPZ. See work with J. Maas and H. Weber.
- Extension to other equations in similar class.
- Rough equations in higher dimensions?

Take-away message: Nonlinear spaces are required to solve some rough equations pathwise.

- Extension to $x \in \mathbf{R}$?
- Convergence of microscopic models (for example lattice KPZ) to KPZ. See work with J. Maas and H. Weber.
- Extension to other equations in similar class.
- Rough equations in higher dimensions?

Take-away message: Nonlinear spaces are required to solve some rough equations pathwise.

- Extension to $x \in \mathbf{R}$?
- Convergence of microscopic models (for example lattice KPZ) to KPZ. See work with J. Maas and H. Weber.
- Extension to other equations in similar class.
- Rough equations in higher dimensions?

Take-away message: Nonlinear spaces are required to solve some rough equations pathwise.

- Extension to $x \in \mathbf{R}$?
- Convergence of microscopic models (for example lattice KPZ) to KPZ. See work with J. Maas and H. Weber.
- Extension to other equations in similar class.
- Rough equations in higher dimensions?

Take-away message: Nonlinear spaces are required to solve some rough equations pathwise.

- Extension to $x \in \mathbf{R}$?
- Convergence of microscopic models (for example lattice KPZ) to KPZ. See work with J. Maas and H. Weber.
- Extension to other equations in similar class.
- Rough equations in higher dimensions?