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Introduction

Object of study: KPZ equation of surface growth:

∂th = ∂2xh+ λ(∂xh)2 + ξ −∞

with either x ∈ R or x ∈ S1, and ξ is space-time white noise.

1. Universal model for interface fluctuations. (Shown rigorously
only for SOS model, see Bertini-Giacomin 1997.)

2. Free energy for polymer models.

3. Scaling limit of time-dependent parabolic Anderson model.

4. Universal object describing crossover from Edwards-Wilkinson
to KPZ.

Problem: Right-hand side is badly ill-posed! (Solutions only Cα
for α < 1

2 !!)
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The SOS model

Simplest possible model of surface growth. Surface modelled by
graph with slope ±1:

Dynamic:
1 +
√
ε

1−
√
ε

Theorem (Bertini & Giacomin, 1997): ε
1
2h(xε ,

t
ε2

)− ε−1
converges to KPZ.
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Cole-Hopf solution

Trick introduced by Cole and Hopf in the 50’s. Write

h = λ−1 logZ ,

then Z solves
∂tZ = ∂2xZ + λZ ξ . (?)

Idea: Take this as definition of solution, where (?) is interpreted in
the Itô sense. Work by Bertini-Giacomin shows that this is the
physically relevant solution.

Write h = SCH(h0, ω), taking values in C(R+, C).
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the Itô sense. Work by Bertini-Giacomin shows that this is the
physically relevant solution.

Write h = SCH(h0, ω), taking values in C(R+, C).



Cole-Hopf solution

Trick introduced by Cole and Hopf in the 50’s. Write

h = λ−1 logZ ,

then Z solves
dZ = ∂2xZ dt+ λZ dW . (?)

Idea: Take this as definition of solution, where (?) is interpreted in
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Properties of Cole-Hopf

Mollify W , so Wε,k = ϕ(εk)Wk for cutoff ϕ, and set

dZε = ∂2xZε dt+ λZε dWε , hε = λ−1 logZε .

Then hε solves

∂thε = ∂2xhε + λ
(
(∂xhε)

2 − Cε
)

+ ξε , Cε ≈
1

ε

∫
ϕ2 .

Problems with this notion of solution:

1. Not satisfactory at the formal level.

2. Lack of robustness: no good approximation theory for other
modifications (hyperviscosity, time-smoothing, etc).

3. Properties of solutions do not always transform well
(regularity of difference for example).
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Some attempts

1. Consider product as Wick product ∂xh � ∂xh (Øksendal & Al
1995): wrong notion of solution (6= SCH). Also wrong scaling
properties (Chan 2000).

2. Formulate as martingale problem (Assing 2002): no
well-posedness, “generator” not shown to be closable.

3. Apply “standard” renormalisation techniques inspired by QFT
(Da Prato, Debussche, Tubaro 2007): only works for a
regularised equation.

4. Define nonlinearity on some distributional space (Gonçalves,
Jara 2010, Assing 2011): no uniqueness. No characterisation
of class of distributions for which formulation even makes
sense.
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A robustness result

Theorem (H. 2011): For α > 0 arbitrary one can build the
following objects:

X × Cα C(R+, Cα)

·

Ω × Cα C(R+, Cα)

Ψ

SR

SCH

where SR is jointly continuous, but Ψ is only measurable. (Slight
cheat: solutions are only local in general.)

Extends the Cole-Hopf solution to a much larger class of input
noises in a robust way!
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A deterministic result

Consider solutions hε to

∂thε = ∂2xhε + (∂xhε)
2 + ε−3/2g(ε−1x− ε−2t)−Kε ,

for centred periodic g and suitable large constants Kε. Then, one
can compute K such that hε → h solving

∂th = ∂2xh+ (∂xh)2 +K∂xh .

Proof: Just show that Ψ(gε) converges to a limit in X ...
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Ideas of technique

Idea: Perform Wild expansion of solution: define

∂tYε = ∂2xYε + ξε .

For any binary tree τ = [τ1, τ2], define Y τ
ε recursively by

∂tY
τ
ε = ∂2xY

τ
ε + ∂xY

τ1
ε ∂xY

τ2
ε − Cτε .

Formal calculation shows that

hε(t) =
∑
τ

λ|τ |−1Y τ
ε (t) ,

provided that
∑

τ C
τ
ε = Cε.
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A convergence result

Theorem: For every τ , there is a choice of ατ and Cτε such that

Y τ
ε → Y τ (Independent of ϕ.)

in probability in C(R, Cα) ∩ Cβ(R, C) for α < ατ and β < 1
2 .

Optimal choice: α = 1
2 , α = 1, ατ = (ατ1 ∧ ατ2) + 1.

Cε = Cε ∼
1

ε

∫
R
ϕ2(x) dx ,

Cε =
4π√

3
| log ε| − C(ϕ) ,

Cε = −1
4Cε .



Truncated expansion

Idea: Write hε as

hε =
∑
τ∈T

λ|τ |−1Y τ
ε + uε ,

for a finite set T , derive an equation for uε, and pass to limit.
Minimal working choice: T = { , , , , }. One obtains

∂tuε = ∂2xuε + 2λ∂xuε ∂xYε + “l.o.t.” .

Would like to make sense of

∂tu = ∂2xu+ 2λ∂xu ∂xY .

“Theorem:” There exists no pair of Banach spaces containing u
and Y such that the right-hand side makes sense. (Very different
from DiPerna - Lions, closer to Flandoli - Russo.)
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How to solve that equation?

Writing v = ∂xu, recall we want to solve

∂tv = ∂2xv + 2λ∂x
(
v ∂xY

)
.

If v were constant on the right hand side, then one would expect v
to “look locally like” 2λvΦ, where

∂tΦ = ∂2xΦ + ∂2xY .

Idea: Set up fixed point argument in space of functions that “look
like Φ” and use the fact that one can define Φ ∂xY “by hand”.

Resulting space is a non-linear algebraic variety embedded in a
larger Banach space. Uses controlled rough paths à la
Gubinelli-Lyons.
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Conclusions

Take-away message: Nonlinear spaces are required to solve some
rough equations pathwise.

Some open problems:

• Extension to x ∈ R?

• Convergence of microscopic models (for example lattice KPZ)
to KPZ. See work with J. Maas and H. Weber.

• Extension to other equations in similar class.

• Rough equations in higher dimensions?
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