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Definition Applications Theory Methods

Matrix Logarithm

Definition
A logarithm of A ∈ Cn×n is any matrix X such that eX = A.

Implicit definition.
Properties, classification?
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Outline

1 Definition and Properties

2 Applications

3 Theory

4 Computing the Matrix Logarithm and
its Fréchet derivative
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Cayley and Sylvester

Matrix algebra developed by Arthur
Cayley, FRS (1821–1895) in Memoir on
the Theory of Matrices (1858).

Cayley considered matrix square
roots.

Term “matrix” coined in 1850 by James
Joseph Sylvester, FRS (1814–1897).

Gave (1883) first definition of f (A)
for general f .
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Multiplicity of Definitions

There have been proposed in the literature since 1880
eight distinct definitions of a matric function,

by Weyr, Sylvester and Buchheim,
Giorgi, Cartan, Fantappiè, Cipolla,

Schwerdtfeger and Richter.

— R. F. Rinehart,
The Equivalence of Definitions

of a Matric Function (1955)
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Jordan Canonical Form

Z−1AZ = J = diag(J1, . . . , Jp), Jk︸︷︷︸
mk×mk

=


λk 1

λk
. . .
. . . 1

λk


Definition

f (A) = Zf (J)Z−1 = Zdiag(f (Jk))Z−1,

f (Jk) =


f (λk) f ′(λk) . . .

f (mk−1))(λk)

(mk − 1)!

f (λk)
. . . ...
. . . f ′(λk)

f (λk)

 .
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Primary and Nonprimary Logarithms

A = diag(1,1,e,e).

Primary: log(A) = diag(0,0,1,1).

Nonprimary: log(A) = diag(0,2πi ,1,1).
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Cauchy Integral Theorem

Definition

f (A) =
1

2πi

∫
Γ

f (z)(zI − A)−1 dz,

where f is analytic on and inside a closed contour Γ that
encloses λ(A).
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Mercator’s Series

By integrating (1 + t)−1 = 1− t + t2 − t3 + · · · between 0
and x we obtain Mercator’s series (1668),

log(1 + x) = x − x2

2
+

x3

3
− x4

4
+ · · · , |x | < 1.

For A ∈ Cn×n,

log(I + A) = A− A2

2
+

A3

3
− A4

4
+ · · · , ρ(A) < 1.
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Composite Functions

Theorem
f (t) = g(h(t)) ⇒ f (A) = g(h(A)).

Corollary
exp(log(A)) = A when log(A) is defined.
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Composite Functions

Theorem
f (t) = g(h(t)) ⇒ f (A) = g(h(A)).

Corollary
exp(log(A)) = A when log(A) is defined.

What about log(exp(A)) = A?

Matrix unwinding number

U(A) = A− log(exp(A))
2πi

.
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Toolbox of Matrix Functions

d2y
dt2 + Ay = 0, y(0) = y0, y ′(0) = y ′0

has solution

y(t) = cos(
√

At)y0 +
(√

A
)−1 sin(

√
At)y ′0.

But [
y ′

y

]
= exp

([
0 −tA

t In 0

])[
y ′0
y0

]
.

In software want to be able evaluate interesting f at
matrix args as well as scalar args.
MATLAB has expm, logm, sqrtm, funm.
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Application: Control Theory

Convert continuous-time system

dx
dt

= Fx(t) + Gu(t),

y = Hx(t) + Ju(t),

to discrete-time state-space system

xk+1 = Axk + Buk ,

yk = Hxk + Juk .

Have
A = eFτ , B =

(∫ τ

0
eFtdt

)
G,

where τ is the sampling period.
MATLAB Control System Toolbox: c2d and d2c.
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The Average Eye

First order character of optical system characterized by
transference matrix

T =

[
S δ
0 1

]
∈ R5×5,

where S ∈ R4×4 is symplectic:

ST JS = J =

[
0 I2
−I2 0

]
.

Average m−1∑m
i=1 Ti is not a transference matrix.

Harris (2005) proposes the average exp(m−1∑m
i=1 log(Ti)).
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Markov Models

Time-homogeneous continuous-time Markov process
with transition probability matrix P(t) ∈ Rn×n.
Transition intensity matrix Q: qij ≥ 0 (i 6= j),∑n

j=1 qij = 0, P(t) = eQt .

For discrete-time Markov processes:

Embeddability problem
When does a given stochastic P have a real logarithm Q
that is an intensity matrix?
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Markov Models (1)—Example

With x = −e−2
√

3π ≈ −1.9× 10−5,

P =
1
3

1 + 2x 1− x 1− x
1− x 1 + 2x 1− x
1− x 1− x 1 + 2x

 .
P diagonalizable, Λ(P) = {1, x , x}.
Every primary log complex (can’t have complex
conjugate ei’vals).
Yet a generator is the non-primary log

Q = 2
√

3π

−2/3 1/2 1/6
1/6 −2/3 1/2
1/2 1/6 −2/3

 .
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Markov Models (2)

Suppose P ≡ P(1) has a generator Q = log P.
Then P(t) at other times is P(t) = exp(Qt).
E.g., if P transition matrix for 1 year,

P(1/12) = e
1

12 log P ≡ P1/12 is matrix for 1 month.

Problem: log P, P1/k may have wrong sign patterns⇒
“regularize”.
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HIV to Aids Transition

Estimated 6-month transition matrix.
Four AIDS-free states and 1 AIDS state.
2077 observations (Charitos et al., 2008).

P =


0.8149 0.0738 0.0586 0.0407 0.0120
0.5622 0.1752 0.1314 0.1169 0.0143
0.3606 0.1860 0.1521 0.2198 0.0815
0.1676 0.0636 0.1444 0.4652 0.1592

0 0 0 0 1

 .
Want to estimate the 1-month transition matrix.

Λ(P) = {1,0.9644,0.4980,0.1493,−0.0043}.
N. J. Higham and L. Lin.

On pth roots of stochastic matrices, LAA, 2011.
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Logs of A = I3

B =

0 0 0
0 0 0
0 0 0

 ,
C =

 0 2π − 1 1
−2π 0 0
−2π 0 0

 , D =

 0 2π 1
−2π 0 0

0 0 0

 ,
eB = eC = eD = I3.

Λ(C) = Λ(D) = {0,2πi ,−2πi}.
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All Solutions of eX = A

Theorem (Gantmacher, 1959)

A ∈ Cn×n nonsing with Jordan canonical form
Z−1AZ = J = diag(J1, J2, . . . , Jp). All solutions to eX = A
are given by

X = Z U diag(L(j1)
1 ,L(j2)

2 , . . . ,L(jp)
p ) U

−1
Z−1,

where
L(jk )

k = log(Jk(λk)) + 2 jk π i Imk ,

jk ∈ Z arbitrary, and U an arbitrary nonsing matrix that
commutes with J.
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All Solutions of eX = A: Classified

Theorem
A ∈ Cn×n nonsing: p Jordan blocks, s distinct ei’vals.
eX = A has a countable infinity of solutions that are primary
functions of A:

Xj = Zdiag(L(j1)
1 ,L(j2)

2 , . . . ,L(jp)
p )Z−1,

where λi = λk implies ji = jk . If s < p then eX = A has
non-primary solutions

Xj(U) = Z U diag(L(j1)
1 ,L(j2)

2 , . . . ,L(jp)
p ) U

−1
Z−1,

where jk ∈ Z arbitrary, U arbitrary nonsing with UJ = JU,
and for each j ∃ i and k s.t. λi = λk while ji 6= jk .
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Logs of A = I3 (again)

C =

 0 2π − 1 1
−2π 0 0
−2π 0 0

 , D =

 0 2π 1
−2π 0 0

0 0 0

 ,
e0 = eC = eD = I3. Λ(C) = Λ(D) = {0,2πi ,−2πi}.

U =

1 α 0
0 1 α
0 0 1

 , α ∈ C,

X = U diag(2πi ,−2πi ,0)U−1 = 2π i

1 −2α 2α2

0 1 −α
0 0 1

 .
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Square Roots of Rotations

G(θ) =

[
cos θ sin θ
− sin θ cos θ

]
.

G(θ/2) is the natural square root of G(θ).

For θ = π,

G(π) =

[
−1 0
0 −1

]
, G(π/2) =

[
0 1
−1 0

]
.

G(π/2) is a nonprimary square root.
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Principal Logarithm and pth Root

Let A ∈ Cn×n have no eigenvalues on R− .

Principal log
X = log(A) denotes unique X such that

eX = A.
−π < Im

(
λ(X )

)
< π.

Principal pth root

For integer p > 0, X = A1/p is unique X such that
X p = A.
−π/p < arg(λ(X )) < π/p.
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Henry Briggs (1561–1630)

Arithmetica Logarithmica (1624)
Logarithms to base 10 of 1–20,000 and
90,000–100,000 to 14 decimal places.

Briggs must be viewed as one of the
great figures in numerical analysis.

—Herman H. Goldstine,
A History of Numerical Analysis (1977)
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Briggs’ Log Method (1617)

log(ab) = log a + log b ⇒ log a = 2 log a1/2.

Use repeatedly:
log a = 2k log a1/2k

.

Write a1/2k
= 1 + x and note log(1 + x) ≈ x . Briggs worked

to base 10 and used

log10 a ≈ 2k · log10 e · (a1/2k − 1).
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When Does log(BC) = log(B) + log(C)?

Theorem
Let B,C ∈ Cn×n commute and have no ei’vals on R−. If for
every ei’val λj of B and the corr. ei’val µj of C,
|argλj + argµj | < π, then log(BC) = log(B) + log(C).

Proof. log(B) and log(C) commute, since B and C do.
Therefore

elog(B)+log(C) = elog(B)elog(C) = BC.

Thus log(B) + log(C) is some logarithm of BC. Then

Im(logλj + logµj) = argλj + argµj ∈ (−π, π),

so log(B) + log(C) is the principal logarithm of BC.
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Inverse Scaling and Squaring Method

Take B = C in previous theorem:

log A = log
(
A1/2 · A1/2) = 2 log(A1/2),

since argλ(A1/2) ∈ (−π/2, π/2).

Use Briggs’ idea: log A = 2k log
(
A1/2k)

.

Kenney & Laub’s (1989) inverse scaling and squaring
method:

Bring A close to I by repeated square roots.
Approximate log(A1/2s

) using an [m/m] Padé
approximant rm(x) ≈ log(1 + x).
Rescale to find log(A).
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Choice of Parameters s, m

Must have ‖I − A1/2s‖ < 1.

Larger Padé degree m means smaller s.

Let h2m+1(X ) = erm(X) − X − I.
Assume ρ(rm(X )) < π, so log(erm(X)) = rm(X ). Then

rm(X ) = log(I + X + h2m+1(X )) =: log(I + X +∆X ),

where

h2m+1(X ) =
∞∑

k=2m+1

ckX k .
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Bounding the Backward Error

Want to bound norm of h2m+1(X ) =
∑∞

k=2m+1 ckX k .

Non-normality implies ρ(A)� ‖A‖.

Note that

ρ(A) ≤ ‖Ak‖1/k ≤ ‖A‖, k = 1 : ∞.

and limk→∞ ‖Ak‖1/k = ρ(A).

Use ‖Ak‖1/k instead of ‖A‖ in the truncation bounds.
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Algorithm of Al-Mohy & H (2011)

Truncation bounds use ‖Ak‖1/k rather than ‖A‖, leading
to major benefits in speed and accuracy.
Matrix norms not such a blunt tool!
Use estimates of ‖Ak‖ (alg of H & Tisseur (2000)).
Choose s and m to achieve double precision backward
error at minimal cost.
Initial Schur decomposition: A = QTQ∗.
Directly and accurately compute certain elements of
T 1/2s − I and log(T ). Use

a1/2s − 1 =
a− 1∏s

i=1(1 + a1/2i )
.
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Frechét Derivative of Logarithm

f (A + E)− f (A)− L(A,E) = o(‖E‖).
Integral formula

L(A,E) =

∫ 1

0

(
t(A− I) + I

)−1E
(
t(A− I) + I

)−1 dt .

Method based on

f
([

X E
0 X

])
=

[
f (X ) L(X ,E)

0 f (X )

]
.

Kenney & Laub (1998): Kronecker–Sylvester alg,
Padé of tanh(x)/x . Requires complex arithmetic.
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Algorithm of Al-Mohy, H & Relton (2012)

Fréchet differentiate the ISS algorithm!

1 E0 = E
2 for i = 1: s
3 Compute A1/2i .
4 Solve the Sylvester eqn A1/2i Ei + EiA1/2i

= Ei−1.
5 end
6 log(A) ≈ 2srm(A1/2s − I)
7 Llog(A,E) ≈ 2sLrm(A1/2s − I,Es)

Backward Error Result

rm(X ) = log(I + X +∆X ),

Lrm(X ,E) = Llog(I + X +∆X ,E +∆E).
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Conclusions & Future Directions

Log appears in a growing number of applications.
Have good algorithms for log(A), Llog(A) and estimating
the condition number.
If A is real can work entirely in real arithmetic.

Conditioning of f (A).
Non-primary functions.
Functions of
structured matrices.
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