The Matrix Logarithm: from Theory to Computation

Nick Higham
School of Mathematics
The University of Manchester

higham@ma.man.ac.uk
http://www.ma.man.ac.uk/~higham/

6th European Congress of Mathematics, July 2012

Matrix Logarithm

Definition

A logarithm of $A \in \mathbb{C}^{n \times n}$ is any matrix X such that $e^{X}=A$.

- Implicit definition.

■ Properties, classification?

Outline

(1) Definition and Properties

(2) Applications

TheoryComputing the Matrix Logarithm and its Fréchet derivative
Cayley and Sylvester

Matrix algebra developed by Arthur Cayley, FRS (1821-1895) in Memoir on the Theory of Matrices (1858).

- Cayley considered matrix square roots.

Term "matrix" coined in 1850 by James Joseph Sylvester, FRS (1814-1897).

- Gave (1883) first definition of $f(A)$ for general f.

Multiplicity of Definitions

There have been proposed in the literature since 1880 eight distinct definitions of a matric function, by Weyr, Sylvester and Buchheim, Giorgi, Cartan, Fantappiè, Cipolla, Schwerdtfeger and Richter.
-R. F. Rinehart, The Equivalence of Definitions of a Matric Function (1955)

Multiplicity of Definitions

There have been proposed in the literature since 1880 eight distinct definitions of a matric function, by Weyr, Sylvester and Buchheim, Giorgi, Cartan, Fantappiè, Cipolla, Schwerdtfeger and Richter.

- R. F. Rinehart, The Equivalence of Definitions of a Matric Function (1955)

Jordan Canonical Form

$Z^{-1} A Z=J=\operatorname{diag}\left(J_{1}, \ldots, J_{p}\right), \underbrace{J_{k}}_{m_{k} \times m_{k}}=\left[\begin{array}{ccc}\lambda_{k} & \ddots & \\ & & \ddots\end{array}\right] 1$

Definition

$$
\begin{gathered}
f(A)=Z f(J) Z^{-1}=Z \operatorname{diag}\left(f\left(J_{k}\right)\right) Z^{-1}, \\
f\left(J_{k}\right)=\left[\begin{array}{cccc}
f\left(\lambda_{k}\right) & f^{\prime}\left(\lambda_{k}\right) & \cdots & \frac{\left.f^{\left(m_{k}-1\right)}\right)\left(\lambda_{k}\right)}{\left(m_{k}-1\right)!} \\
& f\left(\lambda_{k}\right) & \ddots & \vdots \\
& & \ddots & f^{\prime}\left(\lambda_{k}\right) \\
& & & f\left(\lambda_{k}\right)
\end{array}\right] .
\end{gathered}
$$

Primary and Nonprimary Logarithms

$A=\operatorname{diag}(1,1, e, e)$.
Primary: $\log (A)=\operatorname{diag}(0,0,1,1)$.
Nonprimary: $\log (A)=\operatorname{diag}(0,2 \pi i, 1,1)$.

Cauchy Integral Theorem

Definition

$$
f(A)=\frac{1}{2 \pi i} \int_{\Gamma} f(z)(z I-A)^{-1} d z
$$

where f is analytic on and inside a closed contour Γ that encloses $\lambda(A)$.

Mercator's Series

By integrating $(1+t)^{-1}=1-t+t^{2}-t^{3}+\cdots$ between 0 and x we obtain Mercator's series (1668),

$$
\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots, \quad|x|<1
$$

For $A \in \mathbb{C}^{n \times n}$,

$$
\log (I+A)=A-\frac{A^{2}}{2}+\frac{A^{3}}{3}-\frac{A^{4}}{4}+\cdots, \quad \rho(A)<1 .
$$

Composite Functions

Theorem

$$
f(t)=g(h(t)) \Rightarrow f(A)=g(h(A)) .
$$

Corollary

 $\exp (\log (A))=A$ when $\log (A)$ is defined.
Composite Functions

Theorem

$$
f(t)=g(h(t)) \Rightarrow f(A)=g(h(A)) .
$$

Corollary

$\exp (\log (A))=A$ when $\log (A)$ is defined.

What about $\log (\exp (A))=A$?
Matrix unwinding number

$$
\mathcal{U}(A)=\frac{A-\log (\exp (A))}{2 \pi i}
$$

Outline

Definition and Properties

(2) Applications

Theory© Computing the Matrix Logarithm and its Fréchet derivative

Toolbox of Matrix Functions

$$
\frac{d^{2} y}{d t^{2}}+A y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime}
$$

has solution

$$
y(t)=\cos (\sqrt{A} t) y_{0}+(\sqrt{A})^{-1} \sin (\sqrt{A} t) y_{0}^{\prime}
$$

Toolbox of Matrix Functions

$$
\frac{d^{2} y}{d t^{2}}+A y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime}
$$

has solution

$$
y(t)=\cos (\sqrt{A} t) y_{0}+(\sqrt{A})^{-1} \sin (\sqrt{A} t) y_{0}^{\prime}
$$

But

$$
\left[\begin{array}{l}
y^{\prime} \\
y
\end{array}\right]=\exp \left(\left[\begin{array}{cc}
0 & -t A \\
t I_{n} & 0
\end{array}\right]\right)\left[\begin{array}{l}
y_{0}^{\prime} \\
y_{0}
\end{array}\right] .
$$

Toolbox of Matrix Functions

$$
\frac{d^{2} y}{d t^{2}}+A y=0, \quad y(0)=y_{0}, \quad y^{\prime}(0)=y_{0}^{\prime}
$$

has solution

$$
y(t)=\cos (\sqrt{A} t) y_{0}+(\sqrt{A})^{-1} \sin (\sqrt{A} t) y_{0}^{\prime} .
$$

But

$$
\left[\begin{array}{l}
y^{\prime} \\
y
\end{array}\right]=\exp \left(\left[\begin{array}{cc}
0 & -t A \\
t I_{n} & 0
\end{array}\right]\right)\left[\begin{array}{l}
y_{0}^{\prime} \\
y_{0}
\end{array}\right] .
$$

■ In software want to be able evaluate interesting f at matrix args as well as scalar args.

- MATLAB has expm, logm, sqrtm, funm.

Application: Control Theory

Convert continuous-time system

$$
\begin{aligned}
\frac{d x}{d t} & =F x(t)+G u(t), \\
y & =H x(t)+J u(t),
\end{aligned}
$$

to discrete-time state-space system

$$
\begin{aligned}
x_{k+1} & =A x_{k}+B u_{k}, \\
y_{k} & =H x_{k}+J u_{k} .
\end{aligned}
$$

Have

$$
A=e^{F \tau}, \quad B=\left(\int_{0}^{\tau} e^{F t} d t\right) G,
$$

where τ is the sampling period.
MATLAB Control System Toolbox: c2d and d2c.

The Average Eye

First order character of optical system characterized by transference matrix

$$
T=\left[\begin{array}{ll}
S & \delta \\
0 & 1
\end{array}\right] \in \mathbb{R}^{5 \times 5},
$$

where $S \in \mathbb{R}^{4 \times 4}$ is symplectic:

$$
S^{\top} J S=J=\left[\begin{array}{cc}
0 & I_{2} \\
-I_{2} & 0
\end{array}\right] .
$$

Average $m^{-1} \sum_{i=1}^{m} T_{i}$ is not a transference matrix. Harris (2005) proposes the average $\exp \left(m^{-1} \sum_{i=1}^{m} \log \left(T_{i}\right)\right)$.

Markov Models

- Time-homogeneous continuous-time Markov process with transition probability matrix $P(t) \in \mathbb{R}^{n \times n}$.
- Transition intensity matrix $Q: q_{i j} \geq 0(i \neq j)$,

$$
\sum_{j=1}^{n} q_{i j}=0, P(t)=e^{Q t} .
$$

For discrete-time Markov processes:

Embeddability problem

When does a given stochastic P have a real logarithm Q that is an intensity matrix?

Markov Models (1)—Example

With $x=-e^{-2 \sqrt{3} \pi} \approx-1.9 \times 10^{-5}$,

$$
P=\frac{1}{3}\left[\begin{array}{ccc}
1+2 x & 1-x & 1-x \\
1-x & 1+2 x & 1-x \\
1-x & 1-x & 1+2 x
\end{array}\right] .
$$

- P diagonalizable, $\Lambda(P)=\{1, x, x\}$.
- Every primary log complex (can't have complex conjugate ei'vals).
- Yet a generator is the non-primary log

$$
Q=2 \sqrt{3} \pi\left[\begin{array}{ccc}
-2 / 3 & 1 / 2 & 1 / 6 \\
1 / 6 & -2 / 3 & 1 / 2 \\
1 / 2 & 1 / 6 & -2 / 3
\end{array}\right] .
$$

Markov Models (2)

- Suppose $P \equiv P(1)$ has a generator $Q=\log P$. Then $P(t)$ at other times is $P(t)=\exp (Q t)$. E.g., if P transition matrix for 1 year, $P(1 / 12)=e^{\frac{1}{12} \log P} \equiv P^{1 / 12}$ is matrix for 1 month.
- Problem: $\log P, P^{1 / k}$ may have wrong sign patterns \Rightarrow "regularize".

HIV to Aids Transition

- Estimated 6-month transition matrix.
- Four AIDS-free states and 1 AIDS state.
- 2077 observations (Charitos et al., 2008).

$$
P=\left[\begin{array}{ccccc}
0.8149 & 0.0738 & 0.0586 & 0.0407 & 0.0120 \\
0.5622 & 0.1752 & 0.1314 & 0.1169 & 0.0143 \\
0.3606 & 0.1860 & 0.1521 & 0.2198 & 0.0815 \\
0.1676 & 0.0636 & 0.1444 & 0.4652 & 0.1592 \\
0 & 0 & 0 & 0 & 1
\end{array}\right] .
$$

Want to estimate the 1-month transition matrix.

$$
\begin{aligned}
\Lambda(P)=\{ & \{1,0.9644,0.4980,0.1493,-0.0043\} . \\
& \text { N. J. Higham and L. Lin. }
\end{aligned}
$$

On pth roots of stochastic matrices, LAA, 2011.

Outline

(9) Definition and Properties

(3) Applications

(3) Theory

Computing the Matrix Logarithm and its Fréchet derivative

Logs of $A=l_{3}$

$$
\begin{gathered}
B=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
C=\left[\begin{array}{ccc}
0 & 2 \pi-1 & 1 \\
-2 \pi & 0 & 0 \\
-2 \pi & 0 & 0
\end{array}\right], \quad D=\left[\begin{array}{ccc}
0 & 2 \pi & 1 \\
-2 \pi & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \\
e^{B}=e^{C}=e^{D}=I_{3} . \\
\Lambda(C)=\Lambda(D)=\{0,2 \pi i,-2 \pi i\} .
\end{gathered}
$$

All Solutions of $e^{x}=A$

Theorem (Gantmacher, 1959)

$A \in \mathbb{C}^{n \times n}$ nonsing with Jordan canonical form
$Z^{-1} A Z=J=\operatorname{diag}\left(J_{1}, J_{2}, \ldots, J_{p}\right)$. All solutions to $e^{X}=A$ are given by

$$
X=Z U \operatorname{diag}\left(L_{1}^{\left(j_{1}\right)}, L_{2}^{\left(j_{2}\right)}, \ldots, L_{p}^{\left(j_{j}\right)}\right) U^{-1} Z^{-1}
$$

where

$$
L_{k}^{\left(j_{k}\right)}=\log \left(J_{k}\left(\lambda_{k}\right)\right)+2 j_{k} \pi i I_{m_{k}},
$$

$j_{k} \in \mathbb{Z}$ arbitrary, and U an arbitrary nonsing matrix that commutes with J .

All Solutions of $e^{x}=A$: Classified

Theorem

$A \in \mathbb{C}^{n \times n}$ nonsing: p Jordan blocks, s distinct ei'vals. $e^{X}=A$ has a countable infinity of solutions that are primary functions of A :

$$
X_{j}=Z \operatorname{diag}\left(L_{1}^{\left(j_{1}\right)}, L_{2}^{\left(j_{2}\right)}, \ldots, L_{p}^{\left(j_{j}\right)}\right) Z^{-1}
$$

where $\lambda_{i}=\lambda_{k}$ implies $j_{i}=j_{k}$. If $s<p$ then $e^{X}=\boldsymbol{A}$ has non-primary solutions

$$
X_{j}(U)=Z U \operatorname{diag}\left(L_{1}^{\left(j_{1}\right)}, L_{2}^{\left(j_{2}\right)}, \ldots, L_{p}^{\left(j_{\rho}\right)}\right) U^{-1} Z^{-1}
$$

where $j_{k} \in \mathbb{Z}$ arbitrary, U arbitrary nonsing with $U J=J U$, and for each $j \exists i$ and k s.t. $\lambda_{i}=\lambda_{k}$ while $j_{i} \neq j_{k}$.

Logs of $A=I_{3}$ (again)

$$
\begin{gathered}
C=\left[\begin{array}{ccc}
0 & 2 \pi-1 & 1 \\
-2 \pi & 0 & 0 \\
-2 \pi & 0 & 0
\end{array}\right], \quad D=\left[\begin{array}{ccc}
0 & 2 \pi & 1 \\
-2 \pi & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
e^{0}=e^{C}=e^{D}=I_{3} . \Lambda(C)=\Lambda(D)=\{0,2 \pi i,-2 \pi i\} \\
U=\left[\begin{array}{lll}
1 & \alpha & 0 \\
0 & 1 & \alpha \\
0 & 0 & 1
\end{array}\right], \quad \alpha \in \mathbb{C} \\
X=U \operatorname{diag}(2 \pi i,-2 \pi i, 0) U^{-1}=2 \pi i\left[\begin{array}{ccc}
1 & -2 \alpha & 2 \alpha^{2} \\
0 & 1 & -\alpha \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Square Roots of Rotations

$$
G(\theta)=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]
$$

$G(\theta / 2)$ is the natural square root of $G(\theta)$.
For $\theta=\pi$,

$$
G(\pi)=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right], \quad G(\pi / 2)=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

$G(\pi / 2)$ is a nonprimary square root.

Principal Logarithm and pth Root

Let $A \in \mathbb{C}^{n \times n}$ have no eigenvalues on \mathbb{R}^{-}.

Principal log

$X=\log (A)$ denotes unique X such that

- $e^{X}=A$.
- $-\pi<\operatorname{Im}(\lambda(X))<\pi$.

Principal Logarithm and pth Root

Let $A \in \mathbb{C}^{n \times n}$ have no eigenvalues on \mathbb{R}^{-}.

Principal log

$X=\log (A)$ denotes unique X such that

- $e^{X}=A$.
- $-\pi<\operatorname{Im}(\lambda(X))<\pi$.

Principal p th root

For integer $p>0, X=A^{1 / p}$ is unique X such that

- $X^{p}=A$.
- $-\pi / p<\arg (\lambda(X))<\pi / p$.

Outline

(9) Definition and Properties

Theory

Computing the Matrix Logarithm and its Fréchet derivative

Henry Briggs (1561-1630)

- Arithmetica Logarithmica (1624)
- Logarithms to base 10 of 1-20,000 and 90,000-100,000 to 14 decimal places.

Henry Briggs (1561-1630)

- Arithmetica Logarithmica (1624)
- Logarithms to base 10 of 1-20,000 and 90,000-100,000 to 14 decimal places.

Briggs must be viewed as one of the great figures in numerical analysis.
-Herman H. Goldstine,
A History of Numerical Analysis (1977)

ARITHMETICA
 LOGARITHMICA

SIVE

LOGARITHMORVM.

 CHILIADES TRIGINTA, PRO numeris naturali ferie crefcentibis ab vnitate ad 20,000: et a $90,000 \mathrm{ad} 100,000$. Quorum ope multa perficiunat Arithmetica problemataet Geometrica.
HOS NVMEROS PRIMVS
invenit clarissimys vir Iohannes
Nerervs BaroMerchiltonij : cos autem ex ciu(dem fententia mutavit, corumque ortum ot vfurn illaftavit Henric va Bricoivs, in celcberrma Academia Oxonienfe Gromerrise profeflor Savilitamys.
DEVS NOBIS VSVRAM VITEDEDIT ET INGENII, TANQVAM PECVNiA, NVLLA PRESTITVF゙A. DIE.


```
                    - %
                    LONDINI,
        Excudebat G V L IELM V S
            IONES. 1624.
```


Is

1,31622,77660, 16837,93319,98893,54
2. $177382,79410,03892,28015,97304,13$
$13335,21432,16332,40256,65389,308$
$12547,81984,68945,81796,61918,213$
$10746,07828,32135,74972,13817,6538$
10366,32928,43769,79972,90627,3131
1018 $1,51721,71818,18414,73723,8144$
$150093,35044,84144,74377,59005,1391$
1 $10045,07364,25446,25156,64670,6113$
$10022,51148,2929 \mathrm{I}, 29154,656515,7367$
10015,24945,39987,98759,85395,55805
$210005,62312,60220,86366,18495,91839$ $10002,81116,78778,01323,99249,64325$
14 $10001,40548,51694,72581,52767,32715$ $10000,70275,78941,14355,388 \mathrm{II}, 70845$
[00000,35135,27746,18565,08,881,37077
$710000,17567,48442,25738,33846,78274$ $12000,08785,70363,46121,46574,97431$
re000, $04395,84217,11672,36281,88 \mathrm{c8} 3$ 10000,02195,91867,55542,03317,07719 10000,01097,95873,50204, 09754,72940 $10000,05548,97921,68211,14626,60250,4$ $10006 \mathrm{G}, 00274,48957,07382,95091,25449,9$ 10000, $20137,24477,59510,83282,69572,5$ $10000,00068,62238,55210,25737,18748,2$ $10000,00034,31119,22218,83912,75020,8$ $10000,00017,15559,59537,84719,93879,1$ 10500,00008,57779,79451, $43 \cup 51,7588,8$ 10000, $00004,28889,8,633,54198,42901,3$ 10000, $00002,14444,94793,77767,42970,4$
31. 100co,ou001,072222,47395,14050,76926,8
$3210000,0.200 c, 53611,23594,13317,14831,4$
33 $10000,000 \mathrm{cn}, 25 \$ 05,61846,70731,51508,7$
$3+12000,00000,13,402,80923,25383,99277,7$
$35.10050,00002,057 \mathrm{CT}, 40451,60946,55519,6$
36 10ubu, e00 $4,03310,70230,79911,91730,0$
$3712020,00000,01675,35115,39815,61857,6$
$3810000,00000,00837,67557,69872,72425,9$
39 I Socos,asDOC,004 18,33778,8,927,59087,9
$40100: 0,000 x^{2}, 00209,41889,42461,60262,5$
41 INUSد, wCu00, O0 F04, $70944,71230,25311,0$

0,50
0,25
0,125
0,0625
0,03125
$0,01562,5$
$0,00781,25$
$0,00390,625$
0,0019533125
$0,00097,65625$
$0,00048,82812,5$
$0,00024,41406,25$
$0,00012,20703,125$
$0,00006,10351,5625$
0,00003,05175,78125
$0,00001,52,887,8 \mathrm{ge6} 2,5$
$0,00000,76293,94535,25$
$0,00000,38146,97265,625$
$0,00000,19073,48532,8125$
$0,00000,09536,74316,40625$
c, $00000,04768,37158,20312,5$
$0,00000,02384,18579,10156,25$
$0,00000,01192,09289,55078,125$
$0,00000,00596,04644,77539,0625$
$0,00000,00298,02322,38769,53125$
$0,00000,00149,01161,19384,76562,5$
$0,00000,00074,50580,59692,38281,25$
$0,00000,00037,25290,29846,19140,625$
$0,00000,00018,62645,14923,09570,3125$
$0,00000,00009,31322,57461,54785,15625$
$0,06000,00004,65661,28730,77392,57812,5$
$0,00000,00002,32830,64365,38696,28956,25$
$0,00000,00001,16415,32182,69348,14453,125$ $0,00000,00000,58207,66091,34674,07226,5625$ $0,00000,00000,29103,83045,67337,03613,28125$
$0,00000,06000,14551,91522,83668,51806,64062,5$
$0,00000,00000,07275,95761,41834,25903,32031,25$
$0,00000,00000,03637,97880,70917,12951,66015,625$.
$0,00000,00000,01818,98949,35458,56475,83007,8125$
$0,00000,00000,00909,49470,17729,28237,91503,90629$

Briggs' Log Method (1617)

$$
\log (a b)=\log a+\log b \Rightarrow \log a=2 \log a^{1 / 2}
$$

Use repeatedly:

$$
\log a=2^{k} \log a^{1 / 2^{k}}
$$

Write $a^{1 / 2^{k}}=1+x$ and note $\log (1+x) \approx x$. Briggs worked to base 10 and used

$$
\log _{10} a \approx 2^{k} \cdot \log _{10} e \cdot\left(a^{1 / 2^{k}}-1\right)
$$

When Does $\log (B C)=\log (B)+\log (C)$?

Theorem

Let $B, C \in \mathbb{C}^{n \times n}$ commute and have no ei'vals on \mathbb{R}^{-}. If for every ei'val λ_{j} of B and the corr. ei'val μ_{j} of C, $\left|\arg \lambda_{j}+\arg \mu_{j}\right|<\pi$, then $\log (B C)=\log (B)+\log (C)$.

When Does $\log (B C)=\log (B)+\log (C) ?$

Theorem

Let $B, C \in \mathbb{C}^{n \times n}$ commute and have no ei'vals on \mathbb{R}^{-}. If for every ei'val λ_{j} of B and the corr. ei'val μ_{j} of C, $\left|\arg \lambda_{j}+\arg \mu_{j}\right|<\pi$, then $\log (B C)=\log (B)+\log (C)$.

Proof. $\log (B)$ and $\log (C)$ commute, since B and C do. Therefore

$$
e^{\log (B)+\log (C)}=e^{\log (B)} e^{\log (C)}=B C .
$$

Thus $\log (B)+\log (C)$ is some logarithm of $B C$. Then

$$
\operatorname{Im}\left(\log \lambda_{j}+\log \mu_{j}\right)=\arg \lambda_{j}+\arg \mu_{j} \in(-\pi, \pi)
$$

so $\log (B)+\log (C)$ is the principal logarithm of $B C$.

Inverse Scaling and Squaring Method

Take $B=C$ in previous theorem:

$$
\log A=\log \left(A^{1 / 2} \cdot A^{1 / 2}\right)=2 \log \left(A^{1 / 2}\right),
$$

since $\arg \lambda\left(A^{1 / 2}\right) \in(-\pi / 2, \pi / 2)$.

Inverse Scaling and Squaring Method

Take $B=C$ in previous theorem:

$$
\log A=\log \left(A^{1 / 2} \cdot A^{1 / 2}\right)=2 \log \left(A^{1 / 2}\right)
$$

since $\arg \lambda\left(A^{1 / 2}\right) \in(-\pi / 2, \pi / 2)$.
Use Briggs' idea: $\quad \log A=2^{k} \log \left(A^{1 / 2^{k}}\right)$.

Inverse Scaling and Squaring Method

Take $B=C$ in previous theorem:

$$
\log A=\log \left(A^{1 / 2} \cdot A^{1 / 2}\right)=2 \log \left(A^{1 / 2}\right)
$$

since $\arg \lambda\left(A^{1 / 2}\right) \in(-\pi / 2, \pi / 2)$.
Use Briggs' idea: $\quad \log A=2^{k} \log \left(A^{1 / 2^{k}}\right)$.
Kenney \& Laub's (1989) inverse scaling and squaring method:

- Bring A close to $/$ by repeated square roots.
- Approximate $\log \left(A^{1 / 2^{s}}\right)$ using an $[m / m]$ Padé approximant $r_{m}(x) \approx \log (1+x)$.
- Rescale to find $\log (A)$.

Choice of Parameters s, m

Must have $\left\|I-A^{1 / 2^{s}}\right\|<1$.

- Larger Padé degree m means smaller s.

Let $h_{2 m+1}(X)=e^{r_{m}(X)}-X-I$.
Assume $\rho\left(r_{m}(X)\right)<\pi$, so $\log \left(e^{r_{m}(X)}\right)=r_{m}(X)$. Then

$$
r_{m}(X)=\log \left(I+X+h_{2 m+1}(X)\right)=: \log (I+X+\Delta X)
$$

where

$$
h_{2 m+1}(X)=\sum_{k=2 m+1}^{\infty} c_{k} X^{k}
$$

Bounding the Backward Error

Want to bound norm of $h_{2 m+1}(X)=\sum_{k=2 m+1}^{\infty} c_{k} X^{k}$.
■ Non-normality implies $\rho(A) \ll\|A\|$.

- Note that

$$
\rho(A) \leq\left\|A^{k}\right\|^{1 / k} \leq\|A\|, \quad k=1: \infty .
$$

and $\lim _{k \rightarrow \infty}\left\|A^{k}\right\|^{1 / k}=\rho(A)$.

- Use $\left\|A^{k}\right\|^{1 / k}$ instead of $\|A\|$ in the truncation bounds.

$$
A=\left[\begin{array}{cc}
0.9 & 500 \\
0 & -0.5
\end{array}\right] .
$$

Algorithm of Al-Mohy \& H (2011)

- Truncation bounds use $\left\|A^{k}\right\|^{1 / k}$ rather than $\|A\|$, leading to major benefits in speed and accuracy. Matrix norms not such a blunt tool!
■ Use estimates of $\left\|A^{k}\right\|$ (alg of H \& Tisseur (2000)).
- Choose s and m to achieve double precision backward error at minimal cost.
- Initial Schur decomposition: $A=Q T Q^{*}$.

■ Directly and accurately compute certain elements of $T^{1 / 2^{s}}-I$ and $\log (T)$. Use

$$
a^{1 / 2^{s}}-1=\frac{a-1}{\prod_{i=1}^{s}\left(1+a^{1 / 2^{i}}\right)}
$$

Frechét Derivative of Logarithm

$$
f(A+E)-f(A)-L(A, E)=o(\|E\|) .
$$

- Integral formula

$$
L(A, E)=\int_{0}^{1}(t(A-I)+I)^{-1} E(t(A-I)+I)^{-1} d t .
$$

- Method based on

$$
f\left(\left[\begin{array}{ll}
X & E \\
0 & X
\end{array}\right]\right)=\left[\begin{array}{cc}
f(X) & L(X, E) \\
0 & f(X)
\end{array}\right] .
$$

■ Kenney \& Laub (1998): Kronecker-Sylvester alg, Padé of $\tanh (x) / x$. Requires complex arithmetic.

Algorithm of Al-Mohy, H \& Relton (2012)

Fréchet differentiate the ISS algorithm!
$1 E_{0}=E$
2 for $i=1$: s
3 Compute $A^{1 / 2^{i}}$.
4 Solve the Sylvester eqn $A^{1 / 2^{i}} E_{i}+E_{i} A^{1 / 2^{i}}=E_{i-1}$.
5 end
$6 \quad \log (A) \approx 2^{s} r_{m}\left(A^{1 / 2^{s}}-I\right)$
$7 \quad L_{\log }(A, E) \approx 2^{s} L_{r_{m}}\left(A^{1 / 2^{s}}-I, E_{s}\right)$

Backward Error Result

$$
\begin{aligned}
r_{m}(X) & =\log (I+X+\Delta X) \\
L_{r_{m}}(X, E) & =L_{\log }(I+X+\Delta X, E+\Delta E) .
\end{aligned}
$$

Conclusions \& Future Directions

- Log appears in a growing number of applications.
- Have good algorithms for $\log (A), L_{\log }(A)$ and estimating the condition number.
- If A is real can work entirely in real arithmetic.
- Conditioning of $f(A)$.
- Non-primary functions.
- Functions of structured matrices.

References I

EA. H. Al-Mohy and N. J. Higham.
A new scaling and squaring algorithm for the matrix exponential.
SIAM J. Matrix Anal. Appl., 31(3):970-989, 2009.
© A. H. Al-Mohy and N. J. Higham.
Improved inverse scaling and squaring algorithms for the matrix logarithm.
MIMS EPrint 2011.83, Manchester Institute for
Mathematical Sciences, The University of Manchester, UK, Oct. 2011.
18 pp.
Revised April 2012. To appear in SIAM J. Sci. Comput.

References II

专 T. Charitos, P. R. de Waal, and L. C. van der Gaag. Computing short-interval transition matrices of a discrete-time Markov chain from partially observed data.
Statistics in Medicine, 27:905-921, 2008.
Ti W. F. Harris.
The average eye.
Opthal. Physiol. Opt., 24:580-585, 2005.
固 N. J. Higham.
The Matrix Function Toolbox.
http:
//www.ma.man.ac.uk/~higham/mftoolbox.

References III

固 N．J．Higham．
Evaluating Padé approximants of the matrix logarithm． SIAM J．Matrix Anal．Appl．，22（4）：1126－1135， 2001.

园 N．J．Higham．
Functions of Matrices：Theory and Computation．
Society for Industrial and Applied Mathematics， Philadelphia，PA，USA， 2008.
ISBN 978－0－898716－46－7．
xx＋425 pp．
国 N．J．Higham and A．H．Al－Mohy．
Computing matrix functions．
Acta Numerica，19：159－208， 2010.

References IV

F. N. J. Higham and L. Lin.

On pth roots of stochastic matrices.
Linear Algebra Appl., 435(3):448-463, 2011.
C. S. Kenney and A. J. Laub.

Condition estimates for matrix functions.
SIAM J. Matrix Anal. Appl., 10(2):191-209, 1989.
© C. S. Kenney and A. J. Laub.
A Schur-Fréchet algorithm for computing the logarithm and exponential of a matrix.
SIAM J. Matrix Anal. Appl., 19(3):640-663, 1998.

