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von Neumann algebras (Murray and von Neumann, 1936)

A von Neumann algebra is an algebra of bounded operators on a Hilbert
space H which is closed under adjoint and in the weak operator topology:

Ti → T w.o.t. if 〈Tiξ, η〉 → 〈T ξ, η〉, for all ξ, η ∈ H.

Examples

B(H), the algebra of all bounded operators on H.

L∞(X ), where (X , µ) is a measure space.

The commutant of any set of operators that is closed under adjoint.
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General constructions of von Neumann algebras

Γ countable group  group von Neumann algebra L(Γ).
Generated by the left regular representation of Γ.
More precisely, L(Γ) is the closure of the span of {ug}g∈Γ,
where ug is the unitary operator on `2(Γ) given by ug (δh) = δgh.

Γ y (X , µ) measure preserving action of a countable group on a
probability space  crossed product algebra L∞(X ) o Γ.
Generated by L∞(X ) and a copy {ug}g∈Γ of the group Γ subject to
the relations ugau∗g = a ◦ g−1.

Remark

These algebras admit a trace: linear functional satisfying τ(ab) = τ(ba).
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Classification of II1 factors

Central problem: Classify L(Γ) and L∞(X ) o Γ.

How much do these algebras “remember” about the group and group
action they were constructed from?

Factors: von Neumann algebras that have trivial center.

II1 factors: infinite dimensional factors that admit a trace.

Proposition

L(Γ) is a II1 factor if and only if Γ has infinite conjugacy classes (icc).

L∞(X ) o Γ is a II1 factor if Γ y (X , µ) is free and ergodic.
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Examples of free ergodic actions

Bernoulli actions Γ y (X0, µ0)Γ.

profinite actions Γ y lim←− Γ/Γn,

where Γ is a residually finite group and (Γn)n is a descending chain of
finite index normal subgroups of Γ with ∩Γn = {e}.

the usual actions SLn(Z) y Tn = Rn/Zn.
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Properties of groups

Amenability

A group Γ is amenable if the left regular representation of Γ has
almost invariant vectors. This means that there exist unit vectors
ξn ∈ `2(Γ) satisfying ‖ug (ξn)− ξn‖ → 0, for all g ∈ Γ.
Recall: ug (δh) = δgh.

Examples: abelian and solvable groups.

Kazhdan’s property (T)

A group Γ has property (T) if any unitary representation of Γ with
almost invariant vectors, has a non-zero invariant vector.

Examples: SLn(Z), n > 3, and lattices in higher rank Lie groups.

Remark. amenable + property (T) =⇒ finite.
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Amenable versus non-amenable

Theorem (Connes, 1975)

All L(Γ) with Γ amenable and icc are isomorphic.

All L∞(X ) o Γ with Γ infinite amenable and Γ y (X , µ) free ergodic
are isomorphic.

Surprising lack of rigidity: any algebraic property of an amenable group
(e.g. being torsion free) and any dynamical property of its actions (e.g.
being mixing) is lost when passing to von Neumann algebras.

Connes (1980) If Γ is an icc property (T) group, then any automorphism
of L(Γ) that is close to the identity is inner.
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Popa’s deformation/rigidity theory (2001-)

Basic idea

Study II1 factors M that have

a deformation property, e.g. M has a 1-parameter group of
automorphisms with “good” properties, and

a rigidity property, e.g. M contains L(Γ), for a property (T) group Γ.

The combination of these two properties can be sometimes used to
understand the structure of M.

 Rigidity results for crossed product II1 factors: when part or even the
whole action Γ y (X , µ) can be reconstructed from L∞(X ) o Γ.
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Rigidity for crossed product II1 factors

Definition

Two actions Γ y (X , µ) are Λ y (Y , ν) are called conjugate
if there exist isomorphisms α : X → Y and δ : Γ→ Λ such that

α(g · x) = δ(g) · α(x).

Conjugacy of actions ⇒ isomorphism of their von Neumann algebras.

Rigidity: prove the converse.
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Popa’s strong rigidity result

Theorem (Popa, 2004)

Let Γ be a property (T) group and Γ y (X , µ) a free ergodic action.
Let Λ be an icc group and Λ y (Y , ν) = (Y0, ν0)Λ a Bernoulli action.

If L∞(X ) o Γ ∼= L∞(Y ) o Λ, then the groups Γ and Λ are isomorphic and
their actions are conjugate.

First result deducing conjugacy of actions from isomorphism of their von
Neumann algebras.

Question: can we put all the conditions on one of the actions and allow
the other action to be arbitrary?
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Superrigidity for crossed product II1 factors

Definition

A free ergodic action Γ y (X , µ) is called W∗-superrigid (or just
superrigid) if any action Λ y (Y , ν) such that L∞(X ) o Γ ∼= L∞(Y ) o Λ
is conjugate to Γ y (X , µ).

Definition

A ⊂ M Cartan subalgebra: maximal abelian von Neumann subalgebra
such that the unitary operators u ∈ M satisfying uAu∗ = A generate M.

Example: L∞(X ) ⊂ L∞(X ) o Γ, for any free ergodic action Γ y (X , µ).
Remark. Not every Cartan subalgebras arises this way.
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How to prove that an action Γ y (X , µ) is superrigid

Problem 1

Prove that L∞(X ) o Γ has a unique (crossed product) Cartan subalgebra,
up to unitary conjugacy. In other words, if L∞(X ) o Γ = L∞(Y ) o Λ, then
L∞(X ) and L∞(Y ) are unitarily conjugated.

Remark (Singer, 1955): this implies that Γ y (X , µ) and Λ y (Y , ν)
are orbit equivalent: there is an isomorphism α : X → Y satisfying
α(Γ · x) = Λ · α(x).

Problem 2

Prove that any action that is orbit equivalent to Γ y (X , µ) must be
conjugate to it.

Examples of OE superrigid actions:

Furman (1998): the actions SLn(Z) y Tn, for n > 3.

Popa (2004): Bernoulli actions of property (T) groups.

more examples: Monod-Shalom, Kida, Ioana.
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Uniqueness of Cartan subalgebras

Theorem (Ozawa-Popa, 2007)

Let Fn y (X , µ) be a free ergodic profinite action of a free group. Then
L∞(X ) o Fn has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group.
Let Γ y (X , µ) be any free ergodic action.
Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Ioana (2012): any free product Γ = Γ1 ∗ Γ2, with |Γ1| > 2 and |Γ2| > 3.

32 / 54



Uniqueness of Cartan subalgebras

Theorem (Ozawa-Popa, 2007)

Let Fn y (X , µ) be a free ergodic profinite action of a free group. Then
L∞(X ) o Fn has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group.
Let Γ y (X , µ) be any free ergodic action.
Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Ioana (2012): any free product Γ = Γ1 ∗ Γ2, with |Γ1| > 2 and |Γ2| > 3.

33 / 54



Uniqueness of Cartan subalgebras

Theorem (Ozawa-Popa, 2007)

Let Fn y (X , µ) be a free ergodic profinite action of a free group. Then
L∞(X ) o Fn has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group.
Let Γ y (X , µ) be any free ergodic action.
Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Ioana (2012): any free product Γ = Γ1 ∗ Γ2, with |Γ1| > 2 and |Γ2| > 3.

34 / 54



Uniqueness of Cartan subalgebras

Theorem (Ozawa-Popa, 2007)

Let Fn y (X , µ) be a free ergodic profinite action of a free group. Then
L∞(X ) o Fn has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group.
Let Γ y (X , µ) be any free ergodic action.
Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Ioana (2012): any free product Γ = Γ1 ∗ Γ2, with |Γ1| > 2 and |Γ2| > 3.

35 / 54



Uniqueness of Cartan subalgebras

Theorem (Ozawa-Popa, 2007)

Let Fn y (X , µ) be a free ergodic profinite action of a free group. Then
L∞(X ) o Fn has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group.
Let Γ y (X , µ) be any free ergodic action.
Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Ioana (2012): any free product Γ = Γ1 ∗ Γ2, with |Γ1| > 2 and |Γ2| > 3.

36 / 54



The first `2-Betti number and Cartan subalgebras

Conjecture

Assume that β
(2)
1 (Γ) > 0.

Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy,
for any free ergodic action Γ y (X , µ).

Examples of groups with β
(2)
1 > 0: free groups, free product groups,

groups with n generators and at most n − 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then β
(2)
1 (Γ) is an invariant of L∞(X ) o Γ.

More precisely, L∞(X ) o Γ ∼= L∞(Y ) o Λ =⇒ β
(2)
1 (Γ) = β

(2)
1 (Λ).

Gaboriau (2001): β
(2)
1 (Γ) is an orbit equivalence invariant of Γ y (X , µ).

37 / 54



The first `2-Betti number and Cartan subalgebras

Conjecture

Assume that β
(2)
1 (Γ) > 0.

Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy,
for any free ergodic action Γ y (X , µ).

Examples of groups with β
(2)
1 > 0: free groups, free product groups,

groups with n generators and at most n − 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then β
(2)
1 (Γ) is an invariant of L∞(X ) o Γ.

More precisely, L∞(X ) o Γ ∼= L∞(Y ) o Λ =⇒ β
(2)
1 (Γ) = β

(2)
1 (Λ).

Gaboriau (2001): β
(2)
1 (Γ) is an orbit equivalence invariant of Γ y (X , µ).

38 / 54



The first `2-Betti number and Cartan subalgebras

Conjecture

Assume that β
(2)
1 (Γ) > 0.

Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy,
for any free ergodic action Γ y (X , µ).

Examples of groups with β
(2)
1 > 0: free groups, free product groups,

groups with n generators and at most n − 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then β
(2)
1 (Γ) is an invariant of L∞(X ) o Γ.

More precisely, L∞(X ) o Γ ∼= L∞(Y ) o Λ =⇒ β
(2)
1 (Γ) = β

(2)
1 (Λ).

Gaboriau (2001): β
(2)
1 (Γ) is an orbit equivalence invariant of Γ y (X , µ).

39 / 54



The first `2-Betti number and Cartan subalgebras

Conjecture

Assume that β
(2)
1 (Γ) > 0.

Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy,
for any free ergodic action Γ y (X , µ).

Examples of groups with β
(2)
1 > 0: free groups, free product groups,

groups with n generators and at most n − 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then β
(2)
1 (Γ) is an invariant of L∞(X ) o Γ.

More precisely, L∞(X ) o Γ ∼= L∞(Y ) o Λ =⇒ β
(2)
1 (Γ) = β

(2)
1 (Λ).

Gaboriau (2001): β
(2)
1 (Γ) is an orbit equivalence invariant of Γ y (X , µ).

40 / 54



The first `2-Betti number and Cartan subalgebras

Conjecture

Assume that β
(2)
1 (Γ) > 0.

Then L∞(X ) o Γ has a unique Cartan subalgebra, up to unitary conjugacy,
for any free ergodic action Γ y (X , µ).

Examples of groups with β
(2)
1 > 0: free groups, free product groups,

groups with n generators and at most n − 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then β
(2)
1 (Γ) is an invariant of L∞(X ) o Γ.

More precisely, L∞(X ) o Γ ∼= L∞(Y ) o Λ =⇒ β
(2)
1 (Γ) = β

(2)
1 (Λ).

Gaboriau (2001): β
(2)
1 (Γ) is an orbit equivalence invariant of Γ y (X , µ).

41 / 54



First examples of superrigid actions

Definition

An action Γ y (X , µ) is called superrigid if any action Λ y (Y , ν) such
that L∞(X ) o Γ ∼= L∞(Y ) o Λ is conjugate to Γ y (X , µ).

Peterson (2009): existence of (virtually) superrigid actions.

Theorem (Popa-Vaes, 2009)

First concrete families of superrigid actions:

1 Bernoulli actions of many amalgamated free product groups.

2 any mixing action of SL3(Z) ∗T3 SL3(Z).
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1 Bernoulli actions of many amalgamated free product groups.

2 any mixing action of SL3(Z) ∗T3 SL3(Z).
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Superrigidity for Bernoulli actions of property (T) groups

Theorem (Ioana, 2010)

If Γ is any icc property (T) group, then the Bernoulli action
Γ y (X , µ) = (X0, µ0)Γ is superrigid.

Therefore, for a large of group actions, the crossed product von Neumann
algebra L∞(X ) o Γ remembers the group and the action.

Groups covered by the theorem:

PSLn(Z), for n > 3.

icc groups with infinite normal subgroups with relative property (T):

SL2(Z) n Z2.
SL3(Z)× Σ, where Σ is any icc group.
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Rigidity for group II1 factors

The classification of group von Neumann algebras is much less understood.

Open problems

Are L(Fn), n > 2, non-isomorphic?

Are L(SLn(Z)), n > 3, non-isomorphic?

Connes’ rigidity conjecture

If Γ,Λ are icc property (T) groups and L(Γ) ∼= L(Λ), then Γ ∼= Λ.

Definition. A countable group Γ is superrigid if any group Λ satisfying
L(Γ) ∼= L(Λ) must be isomorphic to Γ.

Connes’ rigidity conjecture ⇐⇒ icc property (T) groups are superrigid.
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First examples of superrigid groups

Theorem (Ioana-Popa-Vaes, 2010)

Define Γ0 = Z n (
⊕

n∈Z F2).
Consider the action Γ0 y I = Γ0/Z by left multiplication.
Then Γ = Γ0 n (

⊕
i∈I Z/2Z) is superrigid.

More generally, this result holds if we replace Z by any infinite amenable
group, and F2 by any non-amenable group.
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