Classification and rigidity for von Neumann algebras

Adrian Ioana

University of California, San Diego

6th ECM Krakow, July 4th, 2012 A **von Neumann algebra** is an algebra of bounded operators on a Hilbert space H which is closed under adjoint and in the weak operator topology:

 $T_i \to T$ w.o.t. if $\langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

A **von Neumann algebra** is an algebra of bounded operators on a Hilbert space H which is closed under adjoint and in the weak operator topology:

$$T_i \to T$$
 w.o.t. if $\langle T_i \xi, \eta \rangle \to \langle T \xi, \eta \rangle$, for all $\xi, \eta \in H$.

Examples

- $\mathbb{B}(H)$, the algebra of all bounded operators on H.
- $L^{\infty}(X)$, where (X, μ) is a measure space.
- The commutant of any set of operators that is closed under adjoint.

General constructions of von Neumann algebras

 Γ countable group → group von Neumann algebra L(Γ). Generated by the left regular representation of Γ. More precisely, L(Γ) is the closure of the span of {u_g}_{g∈Γ}, where u_g is the unitary operator on ℓ²(Γ) given by u_g(δ_h) = δ_{gh}.

General constructions of von Neumann algebras

- Γ countable group → group von Neumann algebra L(Γ). Generated by the left regular representation of Γ. More precisely, L(Γ) is the closure of the span of {u_g}_{g∈Γ}, where u_g is the unitary operator on ℓ²(Γ) given by u_g(δ_h) = δ_{gh}.
 Γ ∧ (X, μ) measure preserving action of a countable group on a probability space → crossed product algebra L[∞](X) ⋊ Γ.
 - Generated by $L^{\infty}(X)$ and a copy $\{u_g\}_{g\in\Gamma}$ of the group Γ subject to the relations $u_g a u_g^* = a \circ g^{-1}$.

General constructions of von Neumann algebras

- Γ countable group → group von Neumann algebra L(Γ). Generated by the left regular representation of Γ. More precisely, L(Γ) is the closure of the span of {u_g}_{g∈Γ}, where u_g is the unitary operator on ℓ²(Γ) given by u_g(δ_h) = δ_{gh}.
 Γ ∩ (X, μ) measure preserving action of a countable group on a probability space → crossed product algebra L[∞](X) ⋊ Γ.
 - Generated by $L^{\infty}(X)$ and a copy $\{u_g\}_{g\in\Gamma}$ of the group Γ subject to the relations $u_g a u_g^* = a \circ g^{-1}$.

Remark

These algebras admit a trace: linear functional satisfying $\tau(ab) = \tau(ba)$.

Central problem: Classify $L(\Gamma)$ and $L^{\infty}(X) \rtimes \Gamma$.

How much do these algebras "remember" about the group and group action they were constructed from?

Central problem: Classify $L(\Gamma)$ and $L^{\infty}(X) \rtimes \Gamma$.

How much do these algebras "remember" about the group and group action they were constructed from?

Factors: von Neumann algebras that have trivial center.

 II_1 factors: infinite dimensional factors that admit a trace.

Central problem: Classify $L(\Gamma)$ and $L^{\infty}(X) \rtimes \Gamma$.

How much do these algebras "remember" about the group and group action they were constructed from?

Factors: von Neumann algebras that have trivial center.

 II_1 factors: infinite dimensional factors that admit a trace.

Proposition

• $L(\Gamma)$ is a II₁ factor if and only if Γ has infinite conjugacy classes (icc).

• $L^{\infty}(X) \rtimes \Gamma$ is a II₁ factor if $\Gamma \curvearrowright (X, \mu)$ is free and ergodic.

- Bernoulli actions $\Gamma \curvearrowright (X_0, \mu_0)^{\Gamma}$.
- profinite actions Γ ~ lim Γ/Γ_n, where Γ is a residually finite group and (Γ_n)_n is a descending chain of finite index normal subgroups of Γ with ∩Γ_n = {e}.
- the usual actions $\mathrm{SL}_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n = \mathbb{R}^n/\mathbb{Z}^n$.

Properties of groups

Amenability

- A group Γ is amenable if the left regular representation of Γ has almost invariant vectors. This means that there exist unit vectors ξ_n ∈ ℓ²(Γ) satisfying ||u_g(ξ_n) - ξ_n|| → 0, for all g ∈ Γ. Recall: u_g(δ_h) = δ_{gh}.
- Examples: abelian and solvable groups.

Properties of groups

Amenability

- A group Γ is amenable if the left regular representation of Γ has almost invariant vectors. This means that there exist unit vectors ξ_n ∈ ℓ²(Γ) satisfying ||u_g(ξ_n) - ξ_n|| → 0, for all g ∈ Γ. Recall: u_g(δ_h) = δ_{gh}.
- Examples: abelian and solvable groups.

Kazhdan's property (T)

- A group Γ has **property** (**T**) if any unitary representation of Γ with almost invariant vectors, has a non-zero invariant vector.
- **Examples**: $SL_n(\mathbb{Z})$, $n \ge 3$, and lattices in higher rank Lie groups.

Properties of groups

Amenability

- A group Γ is amenable if the left regular representation of Γ has almost invariant vectors. This means that there exist unit vectors ξ_n ∈ ℓ²(Γ) satisfying ||u_g(ξ_n) - ξ_n|| → 0, for all g ∈ Γ. Recall: u_g(δ_h) = δ_{gh}.
- Examples: abelian and solvable groups.

Kazhdan's property (T)

- A group Γ has **property** (**T**) if any unitary representation of Γ with almost invariant vectors, has a non-zero invariant vector.
- **Examples**: $SL_n(\mathbb{Z})$, $n \ge 3$, and lattices in higher rank Lie groups.

Remark. amenable + property $(T) \Longrightarrow$ finite.

Theorem (Connes, 1975)

- All $L(\Gamma)$ with Γ amenable and icc are isomorphic.
- All L[∞](X) ⋊ Γ with Γ infinite amenable and Γ ∩ (X, μ) free ergodic are isomorphic.

Theorem (Connes, 1975)

- All $L(\Gamma)$ with Γ amenable and icc are isomorphic.
- All L[∞](X) ⋊ Γ with Γ infinite amenable and Γ ∩ (X, μ) free ergodic are isomorphic.

Surprising lack of rigidity: any algebraic property of an amenable group (e.g. being torsion free) and any dynamical property of its actions (e.g. being mixing) is lost when passing to von Neumann algebras.

Theorem (Connes, 1975)

- All $L(\Gamma)$ with Γ amenable and icc are isomorphic.
- All L[∞](X) ⋊ Γ with Γ infinite amenable and Γ ∩ (X, μ) free ergodic are isomorphic.

Surprising lack of rigidity: any algebraic property of an amenable group (e.g. being torsion free) and any dynamical property of its actions (e.g. being mixing) is lost when passing to von Neumann algebras.

Connes (1980) If Γ is an icc property (T) group, then any automorphism of $L(\Gamma)$ that is close to the identity is inner.

Basic idea

Study II_1 factors M that have

- a **deformation property**, e.g. *M* has a 1-parameter group of automorphisms with "good" properties, and
- a **rigidity property**, e.g. *M* contains $L(\Gamma)$, for a property (T) group Γ .

The combination of these two properties can be sometimes used to understand the structure of M.

Basic idea

Study II_1 factors M that have

- a **deformation property**, e.g. *M* has a 1-parameter group of automorphisms with "good" properties, and
- a **rigidity property**, e.g. *M* contains $L(\Gamma)$, for a property (T) group Γ .

The combination of these two properties can be sometimes used to understand the structure of M.

 \rightsquigarrow Rigidity results for crossed product II₁ factors: when part or even the whole action $\Gamma \curvearrowright (X, \mu)$ can be reconstructed from $L^{\infty}(X) \rtimes \Gamma$.

Two actions $\Gamma \curvearrowright (X, \mu)$ are $\Lambda \curvearrowright (Y, \nu)$ are called **conjugate** if there exist isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Lambda$ such that

 $\alpha(\mathbf{g}\cdot\mathbf{x})=\delta(\mathbf{g})\cdot\alpha(\mathbf{x}).$

Two actions $\Gamma \curvearrowright (X, \mu)$ are $\Lambda \curvearrowright (Y, \nu)$ are called **conjugate** if there exist isomorphisms $\alpha : X \to Y$ and $\delta : \Gamma \to \Lambda$ such that

$$\alpha(\mathbf{g}\cdot\mathbf{x})=\delta(\mathbf{g})\cdot\alpha(\mathbf{x}).$$

Conjugacy of actions ⇒ isomorphism of their von Neumann algebras.
Rigidity: prove the converse.

Let Γ be a property (*T*) group and $\Gamma \curvearrowright (X, \mu)$ a free ergodic action. Let Λ be an icc group and $\Lambda \curvearrowright (Y, \nu) = (Y_0, \nu_0)^{\Lambda}$ a Bernoulli action.

Let Γ be a property (*T*) group and $\Gamma \curvearrowright (X, \mu)$ a free ergodic action. Let Λ be an icc group and $\Lambda \curvearrowright (Y, \nu) = (Y_0, \nu_0)^{\Lambda}$ a Bernoulli action.

If $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$, then the groups Γ and Λ are isomorphic and their actions are conjugate.

Let Γ be a property (*T*) group and $\Gamma \curvearrowright (X, \mu)$ a free ergodic action. Let Λ be an icc group and $\Lambda \curvearrowright (Y, \nu) = (Y_0, \nu_0)^{\Lambda}$ a Bernoulli action.

If $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$, then the groups Γ and Λ are isomorphic and their actions are conjugate.

First result deducing conjugacy of actions from isomorphism of their von Neumann algebras.

Let Γ be a property (*T*) group and $\Gamma \curvearrowright (X, \mu)$ a free ergodic action. Let Λ be an icc group and $\Lambda \curvearrowright (Y, \nu) = (Y_0, \nu_0)^{\Lambda}$ a Bernoulli action.

If $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$, then the groups Γ and Λ are isomorphic and their actions are conjugate.

First result deducing conjugacy of actions from isomorphism of their von Neumann algebras.

Question: can we put all the conditions on one of the actions and allow the other action to be arbitrary?

A free ergodic action $\Gamma \curvearrowright (X, \mu)$ is called **W**^{*}-superrigid (or just superrigid) if any action $\Lambda \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

A free ergodic action $\Gamma \curvearrowright (X, \mu)$ is called \mathbf{W}^* -superrigid (or just superrigid) if any action $\Lambda \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

Definition

 $A \subset M$ Cartan subalgebra: maximal abelian von Neumann subalgebra such that the unitary operators $u \in M$ satisfying $uAu^* = A$ generate M.

A free ergodic action $\Gamma \curvearrowright (X, \mu)$ is called \mathbf{W}^* -superrigid (or just superrigid) if any action $\Lambda \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

Definition

 $A \subset M$ Cartan subalgebra: maximal abelian von Neumann subalgebra such that the unitary operators $u \in M$ satisfying $uAu^* = A$ generate M. Example: $L^{\infty}(X) \subset L^{\infty}(X) \rtimes \Gamma$, for any free ergodic action $\Gamma \curvearrowright (X, \mu)$. Remark. Not every Cartan subalgebras arises this way.

How to prove that an action $\Gamma \curvearrowright (X, \mu)$ is superrigid

Problem 1

Prove that $L^{\infty}(X) \rtimes \Gamma$ has a unique (crossed product) Cartan subalgebra, up to unitary conjugacy. In other words, if $L^{\infty}(X) \rtimes \Gamma = L^{\infty}(Y) \rtimes \Lambda$, then $L^{\infty}(X)$ and $L^{\infty}(Y)$ are unitarily conjugated.

How to prove that an action $\Gamma \curvearrowright (X, \mu)$ is superrigid

Problem 1

Prove that $L^{\infty}(X) \rtimes \Gamma$ has a unique (crossed product) Cartan subalgebra, up to unitary conjugacy. In other words, if $L^{\infty}(X) \rtimes \Gamma = L^{\infty}(Y) \rtimes \Lambda$, then $L^{\infty}(X)$ and $L^{\infty}(Y)$ are unitarily conjugated.

Remark (Singer, 1955): this implies that $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are orbit equivalent: there is an isomorphism $\alpha : X \to Y$ satisfying $\alpha(\Gamma \cdot x) = \Lambda \cdot \alpha(x)$.

How to prove that an action $\Gamma \curvearrowright (X,\mu)$ is superrigid

Problem 1

Prove that $L^{\infty}(X) \rtimes \Gamma$ has a unique (crossed product) Cartan subalgebra, up to unitary conjugacy. In other words, if $L^{\infty}(X) \rtimes \Gamma = L^{\infty}(Y) \rtimes \Lambda$, then $L^{\infty}(X)$ and $L^{\infty}(Y)$ are unitarily conjugated.

Remark (Singer, 1955): this implies that $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are orbit equivalent: there is an isomorphism $\alpha : X \to Y$ satisfying $\alpha(\Gamma \cdot x) = \Lambda \cdot \alpha(x)$.

Problem 2

Prove that any action that is orbit equivalent to $\Gamma \curvearrowright (X, \mu)$ must be conjugate to it.

How to prove that an action $\Gamma \curvearrowright (X,\mu)$ is superrigid

Problem 1

Prove that $L^{\infty}(X) \rtimes \Gamma$ has a unique (crossed product) Cartan subalgebra, up to unitary conjugacy. In other words, if $L^{\infty}(X) \rtimes \Gamma = L^{\infty}(Y) \rtimes \Lambda$, then $L^{\infty}(X)$ and $L^{\infty}(Y)$ are unitarily conjugated.

Remark (Singer, 1955): this implies that $\Gamma \curvearrowright (X, \mu)$ and $\Lambda \curvearrowright (Y, \nu)$ are orbit equivalent: there is an isomorphism $\alpha : X \to Y$ satisfying $\alpha(\Gamma \cdot x) = \Lambda \cdot \alpha(x)$.

Problem 2

Prove that any action that is orbit equivalent to $\Gamma \curvearrowright (X, \mu)$ must be conjugate to it.

Examples of OE superrigid actions:

- Furman (1998): the actions $SL_n(\mathbb{Z}) \curvearrowright \mathbb{T}^n$, for $n \ge 3$.
- Popa (2004): Bernoulli actions of property (T) groups.
- more examples: Monod-Shalom, Kida, Ioana.

Let $\mathbb{F}_n \curvearrowright (X, \mu)$ be a free ergodic **profinite** action of a free group. Then $L^{\infty}(X) \rtimes \mathbb{F}_n$ has a unique Cartan subalgebra, up to unitary conjugacy.

Let $\mathbb{F}_n \curvearrowright (X, \mu)$ be a free ergodic **profinite** action of a free group. Then $L^{\infty}(X) \rtimes \mathbb{F}_n$ has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Let $\mathbb{F}_n \curvearrowright (X, \mu)$ be a free ergodic **profinite** action of a free group. Then $L^{\infty}(X) \rtimes \mathbb{F}_n$ has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group. Let $\Gamma \curvearrowright (X, \mu)$ be any free ergodic action. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

Let $\mathbb{F}_n \curvearrowright (X, \mu)$ be a free ergodic **profinite** action of a free group. Then $L^{\infty}(X) \rtimes \mathbb{F}_n$ has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group. Let $\Gamma \curvearrowright (X, \mu)$ be any free ergodic action. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Let $\mathbb{F}_n \curvearrowright (X, \mu)$ be a free ergodic **profinite** action of a free group. Then $L^{\infty}(X) \rtimes \mathbb{F}_n$ has a unique Cartan subalgebra, up to unitary conjugacy.

Chifan-Sinclair (2011): same for non-elementary hyperbolic groups.

Theorem (Popa-Vaes, 2011-2012)

Let Γ be a free group or any non-elementary hyperbolic group. Let $\Gamma \curvearrowright (X, \mu)$ be any free ergodic action. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy.

Question: what other groups Γ have this property?

Ioana (2012): any free product $\Gamma = \Gamma_1 * \Gamma_2$, with $|\Gamma_1| \ge 2$ and $|\Gamma_2| \ge 3$.

Conjecture

Assume that $\beta_1^{(2)}(\Gamma) > 0$. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic action $\Gamma \curvearrowright (X, \mu)$.

Conjecture

Assume that $\beta_1^{(2)}(\Gamma) > 0$. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic action $\Gamma \curvearrowright (X, \mu)$.

Examples of groups with $\beta_1^{(2)} > 0$: free groups, free product groups, groups with *n* generators and at most n - 2 relations.

Conjecture

Assume that $\beta_1^{(2)}(\Gamma) > 0$. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic action $\Gamma \curvearrowright (X, \mu)$.

Examples of groups with $\beta_1^{(2)} > 0$: free groups, free product groups, groups with *n* generators and at most n - 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Conjecture

Assume that $\beta_1^{(2)}(\Gamma) > 0$. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic action $\Gamma \curvearrowright (X, \mu)$.

Examples of groups with $\beta_1^{(2)} > 0$: free groups, free product groups, groups with *n* generators and at most n - 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then $\beta_1^{(2)}(\Gamma)$ is an invariant of $L^{\infty}(X) \rtimes \Gamma$. More precisely, $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda \implies \beta_1^{(2)}(\Gamma) = \beta_1^{(2)}(\Lambda)$.

Conjecture

Assume that $\beta_1^{(2)}(\Gamma) > 0$. Then $L^{\infty}(X) \rtimes \Gamma$ has a unique Cartan subalgebra, up to unitary conjugacy, for any free ergodic action $\Gamma \curvearrowright (X, \mu)$.

Examples of groups with $\beta_1^{(2)} > 0$: free groups, free product groups, groups with *n* generators and at most n - 2 relations.

Partial results: Popa-Vaes, Chifan-Peterson, Ioana.

Remark

If the conjecture holds, then $\beta_1^{(2)}(\Gamma)$ is an invariant of $L^{\infty}(X) \rtimes \Gamma$. More precisely, $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda \implies \beta_1^{(2)}(\Gamma) = \beta_1^{(2)}(\Lambda)$.

Gaboriau (2001): $\beta_1^{(2)}(\Gamma)$ is an orbit equivalence invariant of $\Gamma \curvearrowright (X, \mu)$.

An action $\Gamma \curvearrowright (X, \mu)$ is called superrigid if any action $\Lambda \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

An action $\Gamma \curvearrowright (X, \mu)$ is called superrigid if any action $\Lambda \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

Peterson (2009): existence of (virtually) superrigid actions.

An action $\Gamma \curvearrowright (X, \mu)$ is called **superrigid** if any action $\Lambda \curvearrowright (Y, \nu)$ such that $L^{\infty}(X) \rtimes \Gamma \cong L^{\infty}(Y) \rtimes \Lambda$ is conjugate to $\Gamma \curvearrowright (X, \mu)$.

Peterson (2009): existence of (virtually) superrigid actions.

Theorem (Popa-Vaes, 2009)

First concrete families of superrigid actions:

- Bernoulli actions of many amalgamated free product groups.
- **2** any mixing action of $SL_3(\mathbb{Z}) *_{T_3} SL_3(\mathbb{Z})$.

Superrigidity for Bernoulli actions of property (T) groups

Theorem (loana, 2010)

If Γ is any icc property (T) group, then the Bernoulli action $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^{\Gamma}$ is superrigid.

Theorem (loana, 2010)

If Γ is any icc property (T) group, then the Bernoulli action $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^{\Gamma}$ is superrigid.

Therefore, for a large of group actions, the crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$ remembers the group and the action.

Theorem (loana, 2010)

If Γ is any icc property (T) group, then the Bernoulli action $\Gamma \curvearrowright (X, \mu) = (X_0, \mu_0)^{\Gamma}$ is superrigid.

Therefore, for a large of group actions, the crossed product von Neumann algebra $L^{\infty}(X) \rtimes \Gamma$ remembers the group and the action.

Groups covered by the theorem:

- $\mathsf{PSL}_n(\mathbb{Z})$, for $n \ge 3$.
- icc groups with infinite normal subgroups with relative property (T):
 - $SL_2(\mathbb{Z}) \ltimes \mathbb{Z}^2$.
 - $SL_3(\mathbb{Z}) \times \Sigma$, where Σ is any icc group.

Open problems

- Are $L(\mathbb{F}_n)$, $n \ge 2$, non-isomorphic?
- Are $L(SL_n(\mathbb{Z}))$, $n \ge 3$, non-isomorphic?

Open problems • Are $L(\mathbb{F}_n)$, $n \ge 2$, non-isomorphic? • Are $L(SL_n(\mathbb{Z}))$, $n \ge 3$, non-isomorphic?

Connes' rigidity conjecture

If Γ, Λ are icc property (T) groups and $L(\Gamma) \cong L(\Lambda)$, then $\Gamma \cong \Lambda$.

Open problems • Are $L(\mathbb{F}_n)$, $n \ge 2$, non-isomorphic? • Are $L(SL_n(\mathbb{Z}))$, $n \ge 3$, non-isomorphic?

Connes' rigidity conjecture

If Γ, Λ are icc property (T) groups and $L(\Gamma) \cong L(\Lambda)$, then $\Gamma \cong \Lambda$.

Definition. A countable group Γ is **superrigid** if any group Λ satisfying $L(\Gamma) \cong L(\Lambda)$ must be isomorphic to Γ .

Open problems • Are $L(\mathbb{F}_n)$, $n \ge 2$, non-isomorphic? • Are $L(SL_n(\mathbb{Z}))$, $n \ge 3$, non-isomorphic?

Connes' rigidity conjecture

If Γ, Λ are icc property (T) groups and $L(\Gamma) \cong L(\Lambda)$, then $\Gamma \cong \Lambda$.

Definition. A countable group Γ is **superrigid** if any group Λ satisfying $L(\Gamma) \cong L(\Lambda)$ must be isomorphic to Γ .

Connes' rigidity conjecture \iff icc property (T) groups are superrigid.

Theorem (Ioana-Popa-Vaes, 2010)

Define $\Gamma_0 = \mathbb{Z} \ltimes (\bigoplus_{n \in \mathbb{Z}} \mathbb{F}_2)$. Consider the action $\Gamma_0 \curvearrowright I = \Gamma_0/\mathbb{Z}$ by left multiplication. Then $\Gamma = \Gamma_0 \ltimes (\bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z})$ is superrigid.

Theorem (Ioana-Popa-Vaes, 2010)

Define $\Gamma_0 = \mathbb{Z} \ltimes (\bigoplus_{n \in \mathbb{Z}} \mathbb{F}_2)$. Consider the action $\Gamma_0 \curvearrowright I = \Gamma_0/\mathbb{Z}$ by left multiplication. Then $\Gamma = \Gamma_0 \ltimes (\bigoplus_{i \in I} \mathbb{Z}/2\mathbb{Z})$ is superrigid.

More generally, this result holds if we replace \mathbb{Z} by any infinite amenable group, and \mathbb{F}_2 by any non-amenable group.