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THE PROBLEM
Consider the linear Schrödinger equation

i h̄
∂u

∂t
= −

h̄2

2m

∂2u

∂x2
− V (x)u, t ≥ 0, −

1√
2m
≤ x ≤

1√
2m

,

where 0 < h̄� 1, and the interaction potential V is a smooth periodic
function, given with smooth periodic initial and boundary conditions.
We can contemplate this equation on a multivariate torus, i h̄∂u

∂t
= − h̄2

2m
∆u− V (x)u and

our theory scales up to this setting. However, our purpose here is to explore ideas, rather
than presenting them in the greatest possible generality.

In physically-interesting coordinates, translating space and time,

∂u

∂t
= iε

∂2u

∂x2
+ iε−1V (x)u, x ∈ [−1,1],

where 0 < ε� 1 but much larger than the Planck constant h̄ ≈ 1.05 · 10−34:
it is useful to think of the range 10−8 ≤ ε ≤ 10−4.
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EXPONENTIALS AND SPLITTINGS. . .
The conventional approach: replace ∂

2u
∂x2 by a linear combination of func-

tion values (or Fourier modes). This results in the linear system

y′ = (εK+ ε−1D)y, t ≥ 0, y(0) = y0,

whose exact solution is

y(t) = et(εK+ε−1D)y0.

It is usual to split the exponential, e.g. with the Strang splitting

e
1
2tεKetε

−1De
1
2tεK = et(εK+ε−1D) +O

(
t3
)

or higher-order splittings. Typically, such high-order splittings are obtained
either via the Yošida device or similar techniques, and result in palindromic
expressions of the form

eα1tεKeβ1tε
−1Deα2tεK · · · eβrtε

−1D · · · eα2tεKeβ1tε
−1Deα1tεK.︷︸︸︷ ︷︸︸︷ ︷︸︸︷

(Palindromy implies even order and helps to preserve unitarity.)
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• Good news: the splitting separates scales. Exponentials with ε and ε−1 are

kept apart and the computation of each individual exponential is cheap.

• Bad news: we need plenty of exponentials to attain reasonable order.
The number of exponentials increases exponentially with order and this renders high-

order methods very expensive.

• Ugly news: the ‘scale’ of the exponentials doesn’t decrease. ideally,

we would have liked to combine numerics with asymptotics, namely for the arguments of

exponentials to become progressively smaller – while in the present case they are all of

just two interlacing orders of magnitude.

The challenge is to develop a methodology which attains all the advantages without

any disadvantages: A high-order splitting that separates scales and pro-
duces an asymptotic expansion in increasing powers of ε.
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ALGEBRA OF OPERATORS
The vector field is a linear combination of two linear operators: ∂2

x and
(multiplication by) V . Let us consider the free Lie algebra F generated by
∂2
x and V . Note that

[V, ∂2
x ] =−(∂2

xV )− 2(∂xV )∂x,

[[V, ∂2
x ], ∂2

x ] = (∂4
xV ) + 4(∂3

xV )∂x + 4(∂2
xV )∂2

x ,

[[V, ∂2
x ], V ] =−2(∂xV )2,

[[[V, ∂2
x ], ∂2

x ], ∂2
x ] =−(∂6

xV )− 6(∂5
xV )∂x − 12(∂4

xV )∂2
x − 8(∂3

xV )∂3
x

and so on. In general, F ⊂ G, where G is the Lie algebra

G =


n∑

k=0

yk(x)∂kx : n ∈ Z+, y0, y1, . . . , yn smooth & periodic

 .

girth

 n∑
k=0

yk(x)∂kx

 = n

is the girth of an element in G.
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PROPOSITION We have girth([X,Y ]) = (girth(X) + girth(Y )− 1)+
for all X,Y ∈ G.

COROLLARY Any nested commutator in F which has at least two more
Vs than ∂2

xs is necessarily zero.

For example, out of the 41 terms in the Hall basis of all the elements of F which can be
written with at most 7 ‘letters’,

[[[V, ∂2
x ], V ], V ], [[[[V, ∂2

x ], V ], V ], V ], [[[[[V, ∂2
x ], ∂2

x ], V ], V ], V ],
[[[[[V, ∂2

x ], V ], V ], V ], V ], [[[[V, ∂2
x ], V ], V ], [V, ∂2

x ]],
[[[[[[V, ∂2

x ], ∂2
x ], V ], V ], V ], V ], [[[[[[V, ∂2

x ], V ], V ], V ], V ], V ],
[[[[[V, ∂2

x ], V ], V ], V ], [V, ∂2
x ]], [[[[V, ∂2

x ], V ], V ], [[V, ∂2
x ], ∂2

x ]],
[[[[V, ∂2

x ], V ], V ], [[V, ∂2
x ], V ]]

are all zero.

But this is not the real reason why all this is important! The real reason
is that V never walks on its own, it is always multiplied by a large parameter
ε−1. The elimination of “ε−1-rich” terms allows us to derive asymptotic
splittings!
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SYMMETRIC ZASSENHAUS SPLITTING
We commence from the symmetric Baker–Campbell–Hausdorff formula

etXetY etX = esBCH(t;X,Y ),

where

sBCH(t;X,Y ) = t(2X + Y )− t3( 1
24[[X,Y ], X] + 1

12[Y, [X,Y ]])

+ t5( 7
360[X, [X, [X, [X,Y ]]]] + 1

360[Y, [Y, [Y, [X,Y ]]]]

− 1
90[X, [Y, [Y, [X,Y ]]]] + 1

45[Y, [X, [X, [X,Y ]]]]

+ 1
60[X, [X, [Y, [X,Y ]]]] + 1

30[Y, [Y, [X, [X,Y ]]]])

+O
(
t7
)
.

It is possible to expand as far as we wish, noting that all the expansion
terms live in the free Lie algebra generated by the ‘letters’ X and Y . Such
algebras possess convenient bases that can be constructed algorithmi-
cally, e.g. the Hall basis, the Lyndon basis and the Dynkin basis.
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The classical Zassenhaus splitting is

et(X+Y ) = etXetY et
2U2(X,Y )et

3U3(X,Y )et
4U4(X,Y ) · · · ,

where

U2(X,Y ) =−1
2[X,Y ],

U3(X,Y ) = 1
3[Y, [X,Y ]] + 1

6[X, [X,Y ]],

U4(X,Y ) =− 1
24[[[X,Y ],X],X]− 1

8[[[X,Y ],X],Y ]− 1
8[[[X,Y ],Y ],Y ].

We are, however, interested in symmetric (i.e., palindromic) splittings. More-
over, powers of t are misleading: we need to reckon with three parameters:
ε (small!), the number N of degrees of freedom once we semi-discretize
(large!) and the time step ∆t (small!). It makes sense to reduce this to a
single currency by requiring

N ∼ O
(
ε−ρ

)
, ∆t ∼ O(εσ)

for some ρ, σ > 0. Note that ∂x scales like O(N) = O
(
ε−ρ

)
.

In the sequel we assume that ρ = σ = 1
2.
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SYMMETRIC ZASSENHAUS
We seek a splitting of the form

ei(∆t)(ε∂2
x+ε−1V ) ≈ eR0eR1 · · · eRseTs+1eRs · · · eR1eR0,︷︸︸︷ ︷︸︸︷ ︷︸︸︷

where (recalling in line with our ‘currency conversion’ that ∂x ∼ O
(
ε−1/2

)
)

Rk=Rk(∆t, ε, V ) = O
(
εk−1/2

)
, k = 0,1, . . . , s,

Ts+1 =Ts+1(∆t, ε, V ) = O
(
εs+1/2

)
.

Let τ = i∆t = O
(
ε1/2

)
. Since τε−1∂2

x ∼ O
(
ε1/2

)
and τε−1V ∼ O

(
ε−1/2

)
,

we commence by ‘knocking out’ the potential:

R0 = 1
2τε
−1V, Y0 = τε∂2

x + τε−1V,

and rewrite the sBCH formula as

eY0 = eR0esBCH(−R0,Y0)eR0.
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In what follows we restrict ourselves to an O
(
ε7/2

)
expansion, i.e. s = 2.

After long calculation:

1 Expanding sBCH(−1
2τε
−1V, τε∂2

x + τε−1V ) with the sBCH formula
and replacing elements from F by terms from G;

2 Throwing away all zero terms, but also all terms which are O(εα) for
α ≥ −7

2;

3 Expressing everything in the Hall basis

we obtain the asymptotic expansion

sBCH(X,Y ) = τεH1 − 1
12
τ3εH4 − 1

24
τ3ε−1H5 − 1

720
τ5εH10 − 1

720
τ5ε−1H11

− 1
180

τ5εH13 − 1
288

τ5ε−1H14 + 1
30240

τ7ε−1H27 + 1
7560

τ7ε−1H32

− 101
120960

τ7ε−1H35 − 89
120960

τ7ε−1H40 +O
(
ε7/2

)
,
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where all that survives of the 41 terms in the Hall basis is

H1 = ∂2
x , H4 = (∂4

xV ) + 4(∂3
xV )∂x + 4(∂2

xV )∂2
x , H5 = −2(∂xV )2,

H10 = −{6(∂5
xV )(∂xV ) + 12(∂4

xV )(∂2
xV ) + 8(∂3

xV )2}
− 24{(∂4

x)(∂xV ) + (∂3
xV )(∂2

xV )}∂x − 24(∂3
x)(∂xV )∂2

x ,

H11 = 8(∂2
xV )(∂xV )2, H13 = {2(∂5

xV )(∂xV )− 4(∂4
x)(∂2

xV )− 4(∂3
xV )2}

+ 8{(∂4
xV )(∂xV )− (∂3

xV )(∂2
xV )}∂x + 4(∂3

xV )(∂xV )∂2
x ,

H14 = −4(∂2
xV )(∂xV )2, H27 = −48(∂3

xV )(∂xV )3,

H32 = 16(∂3
xV )(∂xV )3 + 32(∂2

xV )2(∂xV )2,

H35 = −8(∂3
xV )(∂xV )3 − 16(∂2

xV )2(∂xV )2, H40 = −32(∂2
xV )2(∂xV )2.

4 We next express the remaining commutators as terms in the larger Lie
algebra G.

But here we have a problem!!! Ultimately, we will replace derivatives by
(finite-dimensional) differentiation matrices. Even derivatives yield sym-
metric matrices and multiplication by i results in skew-Hermitian matrices
– good! But, by the same token, odd derivatives ⇒ skew-symmetric ma-
trices ⇒ (after multiplication by i) Hermitian matrices – bad! We must
somehow get rid of odd derivatives!!!
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5 Replacement of odd derivatives:
The main idea is to replace odd derivatives by linear combinations of even derivatives:

y(x)∂x=−1
2

∫ x
0
y(ξ) dξ∂2

x − 1
2y
′(x) + 1

2∂
2
x

[∫ x
0
y(ξ) dξ ·

]
,

y(x)∂3
x =−y′(x)∂2

x − 1
4

∫ x
0
y(ξ) dξ∂4

x + 1
4y
′′′(x)− 1

2∂
2
x [y′(x) · ]

+ 1
4∂

4
x

[∫ x
0
y(ξ) dξ ·

]
and so on. The outcome is

sBCH(−R0, Y0) = τε∂2
x − 1

12
τ3ε{−(∂4

xV ) + 2∂2
x [(∂2

xV ) · ] + 2(∂2
xV )∂2

x ] + 1
12
τ3ε−1(∂xV )2

− 1
720

τ5ε{6(∂5
xV )(∂xV ) + 12(∂4

xV )(∂2
xV ) + 4(∂3

xV )2

− 12∂2
x [(∂3

xV )(∂xV ) · ]− 12(∂3
xV )(∂xV )∂2

x} − 1
90
τ5ε−1(∂2

xV )(∂xV )2

− 1
90
τ5ε{3(∂5

xV )(∂xV )− 2(∂4
xV )(∂2

xV )− 4(∂3
xV )2

+ 2∂2
x [(∂3

xV )(∂xV ) · ]− 4∂2
x [(∂2

xV )2 · ] + 4(∂3
x)(∂xV )∂2

x − 8(∂2
x)2∂2

x}
+ 1

72
τ5ε−1(∂2

xV )(∂xV )2 − 1
630

τ7ε−1(∂3
xV )(∂xV )3

+ 1
945

τ7ε−1{2(∂3
xV )(∂xV )3 + 4(∂2

xV )2(∂xV )2}
+ 101

15120
τ7ε−1{(∂3

xV )(∂xV )3 + 2(∂2
xV )2(∂xV )2}

+ 89
3780

τ7ε−1(∂2
xV )2(∂xV )2 +O

(
ε7/2

)
.
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6 Arranging in increasing powers of ε:

sBCH(−R0, Y0)

=

ε1/2︷ ︸︸ ︷
τε∂2

x + 1
12τ

2ε−1(∂xV )2}

+

ε3/2︷ ︸︸ ︷
1

360τ
5ε−1(∂2

xV )(∂xV )2 − 1
6τ

3ε{∂2
x [(∂2

xV ) · ] + (∂2
xV )∂2

x}

+

ε5/2︷ ︸︸ ︷
1

12τ
3ε(∂4

xV )

+

ε5/2︷ ︸︸ ︷
1

180τ
5ε{−5∂2

x [(∂3
xV )(∂xV ) · ] + 4∂2

x [(∂2
xV )2 · ]− 5(∂3

x)(∂xV )∂2
x + 4(∂2

xV )2∂2
x}

+

ε5/2︷ ︸︸ ︷
1

15120τ
7ε−1{109(∂3

xV )(∂xV )3 + 622(∂2
xV )2(∂xV )2}+O

(
ε7/2

)
.

Note that the expansion now starts from O
(
ε1/2

)
: we have got rid of the O

(
ε−1/2

)
term!
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We now set

R1 = 1
2τε∂

2
x + 1

24τ
3ε−1(∂xV )2, Y1 = sBCH(−R0, Y0).

We repeat steps 1–6 and this results in

sBCH(−R1, Y1) =

ε3/2︷ ︸︸ ︷
1

360
τ5ε−1(∂2

xV )(∂xV )2 − 1
6
τ3ε{∂2

x [(∂2
xV ) · ] + (∂2

xV )∂2
x}

+

ε5/2︷ ︸︸ ︷
1

12
τ3ε(∂4

xV )

+

ε5/2︷ ︸︸ ︷
1

180
τ5ε{−∂2

x [(∂3
xV )(∂xV ) · ] + 8∂2

x [(∂2
xV )2 · ]− (∂3

x)(∂xV )∂2
x + 8(∂2

xV )2∂2
x}

+

ε5/2︷ ︸︸ ︷
1

7560
τ7ε−1{9(∂3

xV )(∂xV )3 + 8(∂2
xV )2(∂xV )2}+O

(
ε7/2

)
.

Thus, we have disposed of the O
(
ε1/2

)
terms: just one step, knocking out the O

(
ε3/2

)
terms, and we’ll be done!
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Thus, finally, R2 is half the leading term in the expansion and

T3 = Y2 = sBCH(−R1, Y1).

To sum up,

R0 = 1
2τε
−1V = O

(
ε−1/2

)
,

R1 = 1
2τε∂

2
x + 1

24τ
3ε−1(∂xV )2 = O

(
ε1/2

)
,

R2 =− 1
12τ

3ε{∂2
x [(∂2

xV ) · ] + (∂2
xV )∂2

x}+ 1
120τ

5ε−1(∂2
xV )(∂xV )2

=O
(
ε3/2

)
,

T3 = 1
12τ

3ε(∂4
xV ) + 1

180τ
5ε{−∂2

x [(∂3
xV )(∂xV ) · ]

+ 8∂2
x [(∂2

xV )2 · ]− (∂3
x)(∂xV )∂2

x + 8(∂2
xV )2∂2

x}
+ 1

7560τ
7ε−1{9(∂3

xV )(∂xV )3 + 8(∂2
xV )2(∂xV )2} = O

(
ε5/2

)
.

We have our asymptotic splitting!
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Once we discretise using nodal values, eR0 is a diagonal matrix, while
matrix/vector products with R1, R2 and T3 can be computed by FFTs as
part of a Krylov-subspace-based computation of their exponentials. If we
discretise using Fourier expansions, also eR0 is computed with FFT.

Stability
Suppose that each (2r)th derivative is replaced by the Hermitian differ-
entiation matrix K2r. Since τ = i∆t always features with an odd power,
K2r, as well as the diagonal matrix that we obtain from discretizing multi-
plication operators, are multiplied by ±i and become skew-Hermitian. For
example

R0 ; 1
2(∆t)ε−1iDV ,

R1 ; 1
2(∆t)εiK2 − 1

24(∆t)3ε−1iDV 2
x
.

However. . . Because of replacement of odd derivatives, we have expres-
sions of the form iDH and iHD where both D and H are Hermitian – and
they are not skew-Hermitian! Is this a problem?
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Not at all! Recalling that each term in F is multiplied by ±i, we note
that FLA(i∂2

x , iV ) ⊂ su(C). All our operations, using sBCH but also the
replacement of odd derivatives, are Lie-algebra-compliant (linear combi-
nations and commutators), therefore everything we have obtained in the
course of our algorithm stays within su(C).
As a sanity check, K symmetric, D diagonal⇒ i(KD+DK) skew-Hermitian, hence

R2 ; 1
12(∆t)3εi(K2DV 2

x
+DV 2

x
K2) + 1

120(∆t)5ε−1iDVxxV 2
x

T3 ; 1
12τ

3εD∂4
xV

+ 1
180τ

5ε{8(K2D(∂2
xV )2 +D(∂2

xV )2K2)

− (K2D(∂3
xV )(∂xV ) +D(∂3

xV )(∂xV )K2)}

+ 1
7560τ

7ε−1{9D(∂3
xV )(∂xV )3 + 8D(∂2

xV )2(∂xV )2}

and it is easy to verify that bothR2 and T3 are skew-Hermitian.

THEOREM It is true thatRk ∈ su(C), k = 0,1, . . . , s, and Ts+1 ∈ su(C).
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LEADING WITH THE DERIVATIVE
Instead of R0 = τε−1V , we start from R0 = τε∂2

x . On the face of it, this
makes no sense, because we want to eliminate first the O

(
ε−1/2

)
term.

However, let’s try. . .

R0 = 1
2τε∂

2
x = O

(
ε1/2

)
,

R1 = 1
2τε
−1V = O

(
ε−1/2

)
,

R2 = 1
12τ

3ε−1(∂xV )2 = O
(
ε1/2

)
,

R3 = 1
24τ

3ε{∂2
x [(∂2

xV ) · ] + (∂2
xV )∂2

x}+ 7
240τ

5ε−1(∂2
xV )(∂xV )2

=O
(
ε3/2

)
,

T4 = 1
24τ

3ε(∂4
xV )− τ5ε{ 1

30∂
2
x [(∂3

xV )(∂xV ) · ] + 1
30(∂3

xV )(∂xV )∂2
x

− 1
60∂

2
x [(∂2

xV )2 · ]− 1
60(∂2

xV )2∂2
x} − τ7ε−1{ 163

25704(∂3
xV )(∂xV )3

+ 211
12852(∂2

xV )2(∂xV )2} = O
(
ε5/2

)
.

On the face of it, more terms. However. . . With nodal values eR0 can be computed with
a single FFT, R1 and R2 are diagonal (the other way around with Fourier expansions)–
onlyR3 = O

(
ε3/2

)
and T4 = O

(
ε5/2

)
require Krylov subspace methods to compute their

exponential!
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SPACE DISCRETIZATION
In principle, we have three standard options to discretise ∂2s

x to spectral
accuracy:

◦ Spectral methods: We project in L2 the solution on N th-degree trigonometric
polynomials: the unknowns are Fourier coefficients, K is diagonal and D a circu-
lant.

◦ Spectral collocation: We interpolate at equally-spaced points by N th-degree
trigonometric polynomials: the unknowns are nodal values, K is a circulant and D
is diagonal.

◦ Pseudospectral method: We wrap around a finite-difference method an infi-
nite number of times: again, the unknowns are nodal values, K is a circulant and D
is diagonal.

Except that, having committed already an O
(
ε7/2

)
error, we don’t need

spectral accuracy!
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FINITE DIFFERENCES

We discretise in space to the sameO
(
ε7/2

)
= O

(
(∆x)7

)
(actually,O

(
(∆x)8

)
)

accuracy using finite differences: um ≈ u(m∆x, · ),
m = −N, . . . , N , ∆x = 1

N+1
2

, and

u′′m≈
1

(∆x)2
(− 1

560um−4 + 8
315um−3 − 1

5um−2 + 8
5um−1 − 205

72 um

+ 8
5um+1 − 1

5um+2 + 8
315um+3 − 1

560um+4).

Therefore:

!! K is a 9-diagonal circulant, and

!! D is a diagonal matrix.

In that case all matrix-vector products are O(N) operations!
20



u(x) =
1

2 + sinπx

21



u(x) = ecosπx
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So, does the error converge to a multiple of some mystery function?

Yes: in general, for the rth finite difference

u′′(x) ≈
1

(∆x)2

r∑
m=−r

amu(x+m∆x)

of order 2r we have
r∑

m=−r
am cosmθ = −θ2 + crθ

2r+2 +O
(
θ2r+4

)
,

whereby the error is cr(∆x)2ru(2r+2)(x) +O
(
(∆x)2r+2

)
. In our case

c4 = − 1
3150, therefore the error is

− 1
3150(∆x)8u(10)(x) +O

(
(∆x)10

)
, ∆x =

1

N + 1
2

.
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The error (in blue) and the error estimate (in red) for u(x) = (2 + sinπx)−1 and
N(= O

(
ε1/2

)
) = 1000.
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COMPUTING THE EXPONENTIALS
Our method produces a dichotomy:

Arguments of the exponentials are either trivial or small !
They are trivial if the matrix is diagonal or is a Toeplitz circulant – in both
cases computing the exponential is straightforward.

They are small if the argument is A = O(εα) for some α > 0. In that case
the mth term in the Krylov basis

{v, Av, A2v, A3v . . .}

is O(εmα). Therefore, using estimates of Hochbruck, Lubich & Selhofer, it
is possible to prove that we need ridiculously small dimension of a Krylov
subspace to compute eAv to O

(
ε7/2

)
, say.

Eliminating the derivative first, R3 = O
(
ε3/2

)
and T4 = O

(
ε5/2

)
require dimensions 3

and 2 respectively!

25



CHALLENGES
• Other pairs (ρ, σ). While the generalisation is straightforward (as a concept: the

computation is fiendish), the interesting bit is to explore what are good choices of
ρ, σ ∈ (0,1).

• Time-dependent potentials. Here we need to marry Magnus expansions with
symmetric Zassenhaus. Preliminary results indicate that, although the algebra is
formidable, this can be done: the underlying free Lie algebra is much more compli-
cated but still embedded in G and “girth restrictions” apply.

• Nonlinear Schrödinger. Can we extend our method to the nonlinear Schrödinger
equation i h̄ut = − h̄2

2m
∇u− V (x)u+ λ|u|2u? Straightforward generalisation does

not work but is there a clever way this set of ideas can be extended?

• Other equations. Can this work with the wave equation? With its generalisations,
e.g. Klein–Gordon? With Hamiltonian ODEs of the form
H(p, q) = εH1(p, q) +H2(p, q), ubiquitous in celestial mechanics?
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