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THE PROBLEM

Consider the linear Schrodinger equation

ih%Z—hzazu—V(x)u t>0 —i<x<i
ot 2m Ox? ’ - 2m — T \2m’
where O < i < 1, and the interaction potential V' is a smooth periodic
function, given with smooth periodic initial and boundary conditions.

We can contemplate this equation on a multivariate torus, ih% = —%Au — V(x)u and

our theory scales up to this setting. However, our purpose here is to explore ideas, rather
than presenting them in the greatest possible generality.

In physically-interesting coordinates, translating space and time,

0 02
8_? — iga_;‘ +ie WV (z)u, =e[-1,1],

where 0 < £ < 1 but much larger than the Planck constant 4 ~ 1.05 - 10~ 3%:
it is useful to think of the range 108 < = < 10~ 4.



EXPONENTIALS AND SPLITTINGS...

2 : S
972 by a linear combination of func-

tion values (or Fourier modes). This results in the linear system

y' = (K+e D)y, t>0, y(0) =y,
whose exact solution is

The conventional approach: replace

—1
y(t) — et(e/C—I—E D)y0°
It is usual to split the exponential, e.g. with the Strang splitting
e5teKgte 1D 5tek — ot(eK+e D) 4 (’)(t3)

or higher-order splittings. Typically, such high-order splittings are obtained
either via the Yosida device or similar techniques, and result in palindromic
expressions of the form

altelCeﬁlte_lDeoQtle o eﬁrts_ll) . aztelCeﬁlts_lDeoqtle.

e 0 o (S
~— -
~— ~~ —
~— ~~ —
—_——

(Palindromy implies even order and helps to preserve unitarity.)



e Good news: the splitting separates scales. Exponentials with e and e~ are
kept apart and the computation of each individual exponential is cheap.

e Bad news: we need plenty of exponentials to attain reasonable order.
The number of exponentials increases exponentially with order and this renders high-

order methods very expensive.

e Ugly news: the ‘scale’ of the exponentials doesn’'t decrease. ideally,
we would have liked to combine numerics with asymptotics, namely for the arguments of
exponentials to become progressively smaller — while in the present case they are all of

just two interlacing orders of magnitude.

The challenge is to develop a methodology which attains all the advantages without
any disadvantages: A high-order splitting that separates scales and pro-
duces an asymptotic expansion in increasing powers of .



ALGEBRA OF OPERATORS

The vector field is a linear combination of two linear operators: 92 and
(multiplication by) V. Let us consider the free Lie algebra § generated by
02 and V. Note that

[V,02] = —(82V) — 2(85V)Bx,
1% 852], 921 = (92V) + ;L(aimax + 4(92V) 02,
[[[V,82],82],02] = —(8%V) — 6(82V )8, — 12(95V)D2 — 8(82V) I3

and so on. In general, § C &, where & is the Lie algebra

n
S = { Z yk(x)algj . n € L4, Yo,Y1,---,Yn SMOOth & periodic} .
k=0

girth ( i yk(x)(‘)];) =n

k=0
is the girth of an element in &.



PROPOSITION We have girth([X,Y]) = (girth(X) + girth(Y’) — 1)y
forall X, Y € &.

COROLLARY Any nested commutator in § which has at least two more
Vs than 02s is necessarily zero.

For example, out of the 41 terms in the Hall basis of all the elements of 1§ which can be
written with at most 7 ‘letters’,

[[[V,02], V], V], [llIV,02],V],V],V], IlllV,92],02],V], V], V],
[[[[[V,02], V], V], V], V], [llIV,02],V],V],[V,82]],
[[[[[[V;02],02], V], V], V], V], [lllllV,92],V],V],V],V], V],
[[[[[V,02], V], V], V], [V,0211, I[ll[V, 021, V1, V1, [V, 021, 0211,
[[[[V;02], V], V], [[V,92], V]]

are all zero.

But this is not the real reason why all this is important! The real reason
is that V' never walks on its own, it is always multiplied by a large parameter
1. The elimination of “=—1-rich” terms allows us to derive asymptotic
splittings!



SYMMETRIC ZASSENHAUS SPLITTING

We commence from the symmetric Baker—Campbell-Hausdorff formula

ot X otY ot X — oSBCH(£XY)

where

SBCH(t; X,Y)=t(2X +Y) — t3(54[[X, Y], X] + 51V, [X, Y]]
+ > (565X, [X, [X, [X, Y1 4 555y, [Y5 Y [X, YD
— ool [V [V, [X, YN 4 45 Y5 [X, [X, (X, Y]
+ 5o [X, [V, X, Y1 + 561, [ [ [, YTIID)
+0(t7).
It is possible to expand as far as we wish, noting that all the expansion
terms live in the free Lie algebra generated by the ‘letters’ X and Y. Such

algebras possess convenient bases that can be constructed algorithmi-
cally, e.g. the Hall basis, the Lyndon basis and the Dynkin basis.



The classical Zassenhaus splitting is
ct(X+Y) _ etXetYetQUQ(X,Y) et3U3(X,Y) et4U4(X,Y) o

)

where

Ux(X,Y)=—3[X,Y],

Us(X,Y) =3[V, [X, Y]] + & [X, [X, Y]],

Ua(X,Y) = —54[[[X,Y],X],X] - 3[[[X,Y],X],Y] - 5ll[X,Y],Y],Y].
We are, however, interested in symmetric (i.e., palindromic) splittings. More-
over, powers of ¢t are misleading: we need to reckon with three parameters:
e (smalll), the number N of degrees of freedom once we semi-discretize

(large!) and the time step At (small!). It makes sense to reduce this to a
single currency by requiring

N ~ O(s_p) : At ~ O(e%)

for some p, o > 0. Note that 0, scales like O(N) = O(s—P).

N|—

In the sequel we assume that p = 0 =



SYMMETRIC ZASSENHAUS
We seek a splitting of the form

ei(A)(05+e71V) o gRoghi ... eRseTst1eRs ... eR1gRo,
S~ v -

N g ——
—

where (recalling in line with our ‘currency conversion’ that 9, ~ O (5—1/2))

R.=R.(At,e,V) = O(sk—l/Q) . k=0,1,....s,
Ts+1=Ts4+1(At,e, V) = O(€S+1/2> -

LetT = iAt = (’)gfl/QZ. Since 7192 ~ O<51/2) and re 1V ~ 0(5_1/2>,
we commence by ‘knocking out’ the potential:
Ro= 3771V, Yo =7ed2 + 71V,
and rewrite the sBCH formula as
eYO — eROeSBCH(_RanO)eRO.



In what follows we restrict ourselves to an 0(57/2> expansion, i.e. s = 2.
After long calculation:

1 Expanding sSBCH(—47e~ 1V, 7202 + 7~ 1 V) with the sBCH formula
and replacing elements from § by terms from &;

2 Throwing away all zero terms, but also all terms which are O (%) for
a> -1
- 25

3 Expressing everything in the Hall basis

we obtain the asymptotic expansion
SBCH(X,Y) =r1eH1 — 157°¢H4 — 5577¢ 'Hs — ﬁlof eH1o — %0755 'Hi

1 1 5.1 Tl 7 1
— 1807 “eHis — sag7 € Hia+ 30240 Ho7 + 756OT e "Hszo

_ 101 7 -lp. 89 7 _1H4O—I—O<€7/2),

120960 120960 "
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where all that survives of the 41 terms in the Hall basis is

Hi =02, Hi= (0*V)+4(02V)d, + 4(02V)07, Hs = —2(0,V)?,
Hio = —{6(32V)(9,V) + 12(8*V)(82V) + 8(83V)?}
— 24{(9)(8:V) + (82V)(02V)}8z — 24(83)(0:V) 053,
Hi1 = 8(9;V)(8:V)?, Hiz={2(8;V)(8:V) — 4(8)(02V) — 4(8;V)?}
+ 8{(05V)(0:V) — (8;V)(8:V)}8: + 4(8;V)(8:V) 6z,
His = —4(92V)(8,V)?, Hor = —48(932V)(8,V)3,
Hzx = 16(92V)(0.V)> 4+ 32(02V)?3(8,V)?,
Hszs = —8(92V)(9,V)> — 16(8°V)?(0,V)?, Hao = —32(02V)?(0,V)>.

4 We next express the remaining commutators as terms in the larger Lie
algebra &.

But here we have a problem!!l Ultimately, we will replace derivatives by
(finite-dimensional) differentiation matrices. Even derivatives yield sym-
metric matrices and multiplication by i results in skew-Hermitian matrices
— good! But, by the same token, odd derivatives = skew-symmetric ma-
trices = (after multiplication by i) Hermitian matrices — bad! We must
somehow get rid of odd derivatives!!!

11



5 Replacement of odd derivatives:

The main idea is to replace odd derivatives by linear combinations of even derivatives:
2 1 / 12| [*
y(@)0e=—} ["y(©) 02 - y/'(e) + 302 | [“y(© - |,
y(@)83 =y ()02 — § ["y(©) dea} + §y"(2) ~ 3021y () -]

104
+ 308w e
and so on. The outcome is
SBCH(—Ro, Yo) =787 — 57%e{—(0;V) 4+ 202[(92V) -1 + 2(85V)02] + 573 1 (9:V)?
— =T 5{6(85V)(8 V) + 12(02V)(02V) + 4(92V)?
— 1282[(83V)(8 V)1 -12(0;V)(8:V)85} — &7 197V ) (0. V)?
o57 e{3(02V)(8:V) — 2(05V)(9;V) — 4(8§V)2
+ 262[(83V)(a V) ]- 482[<82V>2 ]+ 4(07)(8:V)8; — 8(97)%65}
+ ﬁT 5_1(82\/)((9 V)? — =s7e N0 V)(8:V)?
+ 5557 H{2(8V) (V) + 4(87V)?(8:V)*}

+ 2% e H(B2V) (0. V)2 + 2(82V)?(8:V)?}

+ 555577e 1 (02V)2(8:V)? + O (£772).

12



6 Arranging in increasing powers of «:

sBCH(—Ryp, Yp)
1/2

::;682'+'127 6_1(8xV3 }

£3/2
+ 35975 LO2V)(0:V)2 — Lr3e{02((92V) ] + (92V) 02}
=5/2
+ H73e(8%v)
£5/2
+ L% {—502(93V) (8:V) -] + 4021(82V)% ] — 5(83)(8:V)02 + 4(92V)%02}
25/2

T ’15%20778_1{109(83‘/) (8:5"/)3 + 622(55‘/)2(83:‘/)2?4—0(57/2) .

Note that the expansion now starts from O(e!/2): we have got rid of the O (e=1/2) term!
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We now set

Ry = 3702 + 5573 1(0:V)?, Y1 = sBCH(—Ry, Yp).

We repeat steps 1-6 and this results in

£3/2

SBCH(—R1, Y1) = 3257% 1(82V)(8,V)? — Lr3e{02[(82V) -] + (82V)02}

£5/2

+ %7‘35(8;1‘/5

wg

+ s[O3V (8,V) ] + 882[<aQV>2 | - (8%)(0,V)02 + 8(82V)202}

5/2

+ 71 1 719(83V) (0, E + 8(82V)2(8,V) }+o( 7/2) |

7560

Thus, we have disposed of the O(£1/2) terms: just one step, knocking out the O(£3/2)

terms, and we’ll be done!
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Thus, finally, R is half the leading term in the expansion and
Tz = Yo = SBCH(—Rq, Y1).
To sum up,
RO:%T{:‘_lV — (9(8_1/2> :
5 = %7’58% + ﬁ735_1(8x\/)2 = (9(61/2> :
Ry = —157e{071(87V) -1+ (97V)07} + 15p7°e (82V)(82V)?
= 0(53/2) :
T3=157°e(9;V) + 1hgme{— 05 [(B3V) (8 V) -]
+8071(97V)? -1 = (97)(0:V) 03 + 8(95V)?05}
+ 2 e HO(83V) (8:V)3 + 8(82V)2(8:V)?} = 0(5/2).

We have our asymptotic splitting!
15



Once we discretise using nodal values, e’ is a diagonal matrix, while
matrix/vector products with R, B> and 73 can be computed by FFTs as
part of a Krylov-subspace-based computation of their exponentials. If we
discretise using Fourier expansions, also e’ is computed with FFT.

Stability

Suppose that each (2r)th derivative is replaced by the Hermitian differ-
entiation matrix /C»,.. Since = = iAt always features with an odd power,
ICo,., as well as the diagonal matrix that we obtain from discretizing muilti-
plication operators, are multiplied by i and become skew-Hermitian. For
example

Ro~ 5(At)e tiDy,
Ry~ 5(At)eiKa — 57 (AL e 1D, .

However. .. Because of replacement of odd derivatives, we have expres-
sions of the form iD’H and iHD where both D and H are Hermitian — and
they are not skew-Hermitian! Is this a problem?

16



Not at all! Recalling that each term in § is multiplied by +i, we note
that FLA(i02,iV) ¢ su(C). All our operations, using sBCH but also the
replacement of odd derivatives, are Lie-algebra-compliant (linear combi-
nations and commutators), therefore everything we have obtained in the
course of our algorithm stays within su(C).

As a sanity check, K symmetric, D diagonal = i(XXD + DK) skew-Hermitian, hence

Ro~ 15(At)%ei(KoDy2 + Dy2K2) + 155(A8)°e 1Dy, 2
T3~ 1_127-351)8;}‘/ - ﬁTSg{S(KQD(a%V)Q —+ D(a%v)Q’CQ)
— (K2Daavya,v) T Pozvya,v)k2)}
+ 75607 € {9D(03v) (8,2 T 8P (521 y2(0,1)2)

and it is easy to verify that both R, and T3 are skew-Hermitian.

THEOREM lItis true that Ry, € su(C), k= 0,1,...,s,andT,4 1 € su(C).

17



LEADING WITH THE DERIVATIVE

Instead of Ry = 7=~ 1V, we start from Ry = 7202. On the face of it, this
makes no sense, because we want to eliminate first the O( —1/2) term.
However, let’s try. ..

Ry Z%Teﬁg = 0(51/2) :
R4 2%78_1‘/ =0(c71/?),
Ro= 27 31 (0,V)? = 0(e1/?),
R3=1557e{02[(02V) -1+ (02V)03} + a5 1 (05V)(0:V)?
— (f)( 3/2) ,
Ty =537e(0FV) — {5502 [(83V)(0aV) -] + 35(3V) (8:V) 03
— 6002 [(82V)% ] = g5(82V)207} — 77 {55234 (92V) (8:V)°
2 2 2 2
+ 13525(02V)%(0:V)?} = 0(%/2) .
On the face of it, more terms. However... With nodal values e can be computed with
a single FFT, R; and R, are diagonal (the other way around with Fourier expansions)—
only Rz = O(£%/2) and T» = O(e%/2) require Krylov subspace methods to compute their

exponentiall
18



SPACE DISCRETIZATION

In principle, we have three standard options to discretise 92° to spectral
accuracy:

o Spectral methods: We project in L the solution on Nth-degree trigonometric

polynomials: the unknowns are , IC is diagonal and D a circu-
lant.

o Spectral collocation: We interpolate at equally-spaced points by Nth-degree
trigonometric polynomials: the unknowns are , IC is a circulant and D
is diagonal.

o Pseudospectral method: We wrap around a finite-difference method an infi-
nite number of times: again, the unknowns are , KCIs a circulant and D
is diagonal.

Except that, having committed already an (’)(57/ 2) error, we don’t need
spectral accuracy!

19



FINITE DIFFERENCES

We discretise in space to the same O(s7/2) = O((Aa:)7) (actually, O((Ax)8))
accuracy using finite differences: u,, ~ u(mAux, - ),
m=—N,...,N, Ax = N—ll— and

lv
2
1
7 1 3 1 3 205
U~ A2 T560Um—4 T 315%m-3 ~ 5Um-2 T sUm-1 = T3um
8 1 8 1
+ SUm+1 ~ 5Um+2 T 315%m+3 ~ 560Um+4)-
Therefore:
! JC 1s a 9-diagonal circulant, and

!

In that case all matrix-vector products are O (V) operations!

D is a diagonal matrix.

20
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N =20
0.000015 ;

0.00001

}9\0000 ]

e TR DR T R R T
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So, does the error converge to a multiple of some mystery function?

Yes: in general, for the rth finite difference

1
(Az)?

> amu(z + mAcz)

m—-—-—r

u(x) ~
of order 27 we have

T
> amcosmf = —02 + c,02" T2 4 0627
m=—r
whereby the error is ¢, (Az)27u(27+2) (1) + O((Aw)2T+2). In our case
cs = —1=5, therefore the error is
1
N +

—31—150(A:U)8u(10) () + C/)((Aaj)lo) 7 Ap —

N
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- 18

6ofd=x< 10 i
_;:5 =55 -
. < 10 J
- 18 |
1 i
—1 & e 0.5 1
U __ x
- 18 |
O j

The error (in blue) and the error estimate (in red) for w(z) = (2 + sin 7x)~! and
N(= O(e'/?)) = 1000.
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COMPUTING THE EXPONENTIALS

Our method produces a dichotomy:
Arguments of the exponentials are either trivial or small

They are ftrivial if the matrix is diagonal or is a Toeplitz circulant — in both
cases computing the exponential is straightforward.

They are small if the argumentis A = O(&%) for some « > 0. In that case
the mth term in the Krylov basis

{U,AU,AQU,A3U...}

is O (%), Therefore, using estimates of , it
is possible to prove that we need ridiculously small dimension of a Krylov
subspace to compute e“'v to O<e7/ 2), say.
Eliminating the derivative first, R3 = O(£%/2) and T4 = O(£%/2) require dimensions 3
and 2 respectively!
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CHALLENGES

e Other pairs (p, o). While the generalisation is straightforward (as a concept: the
computation is fiendish), the interesting bit is to explore what are good choices of
p,o € (0,1).

® Time-dependent potentials. Here we need to marry Magnus expansions with
symmetric Zassenhaus. Preliminary results indicate that, although the algebra is
formidable, this can be done: the underlying free Lie algebra is much more compli-
cated but still embedded in & and “girth restrictions” apply.

e Nonlinear Schrodinger. Can we extend our method to the nonlinear Schrodinger
equation ihu; = —QB—;Vu — V(x)u + Mul?u? Straightforward generalisation does
not work but is there a clever way this set of ideas can be extended?

e Other equations. Can this work with the wave equation? With its generalisations,
e.g. Klein—Gordon? With Hamiltonian ODEs of the form

H(p,q) =cH1(p,q) + H>(p, q), ubiquitous in celestial mechanics? 26
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