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Hope, Conjecture, Theorem

Hope (Fomin-Zelevinsky)
Each cluster algebra admits a ‘canonical basis’ containing the
cluster monomials.

Conjecture (FZ, 2002)
The cluster monomials are linearly independent.

Theorem (Cerulli–Labardini–K–Plamondon, 2012)
The conjecture holds for all cluster algebras associated with
quivers.

Some previous partial results
Caldero–K (2008), Fomin–Shapiro–Thurston (2008),
Derksen–Weyman–Zelevinsky (2010), Demonet (2011),
Plamondon (2011), Geiss–Leclerc–Schröer (2012).
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The Dynkin diagrams (of type ADE)

Name Graph n # pos. roots

An • • . . . • ≥ 1 n + 1

Dn
•
•

• . . . •UUUUU
iiiii

≥ 4 2n − 2

E6

• • • • •

•
6 36

E7

• • • • • •

•
7 63

E8

• • • • • • •

•
8 120
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A quiver is an oriented graph

Definition
A quiver Q is an oriented graph: It is given by

a set Q0 (the set of vertices)
a set Q1 (the set of arrows)
two maps

s : Q1 → Q0 (taking an arrow to its source)
t : Q1 → Q0 (taking an arrow to its target).

Remark
A quiver is a ‘category without composition’.
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A quiver can have loops, cycles, several components.

Example

The quiver ~A3 : 1
α // 2

β // 3 is an orientation of the Dynkin
diagram A3 : 1 2 3 .

Example

Q : 3
λ

���������
5α

%% //
//
// 6

1 ν
// 2

β //

µ
^^=======

4
γ

oo

We have Q0 = {1,2,3,4,5,6}, Q1 = {α, β, . . .}.
α is a loop, (β, γ) is a 2-cycle, (λ, µ, ν) is a 3-cycle.
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Definition of quiver mutation

Let Q be a finite quiver without loops nor 2-cycles
(from now on always assumed).

Definition (Fomin-Zelevinsky)

Let j ∈ Q0. The mutation µj(Q) is the quiver obtained from Q as
follows

1) for each subquiver i
β // j α // k , add a new arrow

i
[αβ] // k ;

2) reverse all arrows incident with j ;
3) remove the arrows in a maximal set of pairwise disjoint

2-cycles (e.g. •
//
// •oo yields • // • , ‘2-reduction’).
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Examples of quiver mutation

A simple example: 1
##GGGG

2

;;wwww
3oo

1)
1

%%KKKK

2
99ssss // 3oo

2)
1

yyssss

2 // 3oo
eeKKKK

3)
1

yyssss

2 3
eeKKKK
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More complicated examples: Google ‘quiver mutation’!
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Recall: We wanted to define cluster algebras!
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Seeds and their mutations

Definition
A seed is a pair (R,u), where

a) R is a quiver with vertices 1, . . . , n.
b) u = {u1, . . . ,un} is a free generating set of the field

Q(x1, . . . , xn).

Example: (1→ 2→ 3, {x1, x2, x3}) = (x1 → x2 → x3).

Definition
For a vertex j of R, the mutation µj(R,u) is (R′,u′), where

a) R′ = µj(R);
b) u′ = u \ {uj} ∪ {u′j}, with u′j defined by the exchange

relation
uju′j =

∏
arrows
i→j

ui +
∏

arrows
j→k

uk .
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An example

x1 // x2 // x3

1+x2
x1

x2oo // x3 x1
''x1+x3
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oo x3oo x1 // x2

x2+1
x3

oo

...
...

...
...

...
...

66
µ1

vvnnnnnnnnnnnnnnn OO
µ2

��

hh
µ3

((PPPPPPPPPPPPPPP

CC
µ2������� ^^

µ3
��====== ??

µ1
������� __

µ3
��>>>>> @@

µ1
�������� [[

µ2 ��88888

Bernhard Keller Cluster algebras and cluster monomials



Preliminaries: The Dynkin diagrams
Definitions: quiver mutation, cluster algebras

Linear independence: finite case, general case
Main tool of proof: Link to quiver representations

Clusters, cluster variables and the cluster algebra

Let Q be a quiver with n vertices.

Definition
a) The initial seed is (Q, x) = (Q, {x1, . . . , xn}).
b) A cluster is an n-tuple u appearing in a seed (R,u)

obtained from (Q, x) by iterated mutation.
c) The cluster variables are the elements of the clusters.
d) The cluster algebra AQ is the subalgebra of the field

Q(x1, . . . , xn) generated by the cluster variables.
e) A cluster monomial is a product of powers of cluster

variables which all belong to the same cluster.

Remark
If Q is mutation equivalent to Q′, then AQ

∼→ AQ′ .
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Fundamental properties

Let Q be a connected quiver.

Theorem (Fomin-Zelevinsky, 2002)
a) All cluster variables are Laurent polynomials.
b) There is only a finite number of cluster variables iff Q is

mutation-equivalent to an orientation ~∆ of a Dynkin
diagram ∆. Then ∆ is unique and called the
cluster type of Q.

c) If Q = ~∆, the non initial cluster variables are in canonical
bijection with the positive roots of the associated root
system.

Example: D4.
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Finite case

Theorem (Caldero-K, 2008)
The cluster monomials form a basis of the cluster algebra AQ iff
there is only a finite number of cluster variables.

Example: Q = ~A2 = (1→ 2)

There are 5 cluster variables

x1 , x2 , x ′1 =
1 + x2

x1
, x ′2 =

x1 + 1 + x2

x1x2
, x ′′1 =

1 + x1

x2
.

The clusters u = {u1,u2} are the 5 pairs of consecutive
cluster variables in the cyclic order.
There are 5 families of cluster monomials um1

1 um2
2 ,

m1,m2 ≥ 0. Their union is a basis.
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Linear independence: general case

Theorem (Cerulli–Labardini–K–Plamondon, 2012)
The cluster monomials of any cluster algebra associated with a
quiver are linearly independent.

Example: Q : 1 ,, 22 2 (Kronecker quiver)

There are countably many cluster variables

. . . , v−1 , v0 , v1 = x1 , v2 = x2 , v3 , v4 , . . .

The clusters u = {u1,u2} are all pairs of consecutive
cluster variables {vi , vi+1}.
There are countably many families of cluster monomials
um1

1 um2
2 , m1,m2 ≥ 0. Their union is linearly independent.
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representation of a quiver = diagram of vector spaces

Let Q be a quiver with vertices 1, . . . , n, e.g.

4
1

α // 2
β 55kkkkkk

γ ))SSSSSS

3.

Definition
A representation of Q is a diagram of finite-dimensional
complex vector spaces of the shape given by Q.

Example

V4

V1
Vα // V2

Vβ 55kkkkkk

Vγ
))SSSSSS

V3
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The quiver Grassmannian

Let V be a representation of Q.

Definition
A subrepresentation V ′ ⊂ V is a family of subspaces
V ′i ⊂ Vi such that, for each arrow α : i → j , we have
Vα(V ′i ) ⊂ V ′j .
Let e ∈ Nn. The quiver Grassmannian is the variety Gre(V )
of all subrepresentations V ′ ⊂ V such that dim V ′i = ei for
all i .

Remarks

Gre(V ) is a closed subvariety in
∏n

i=1 Grei (Vi).
Every projective variety is a quiver Grassmannian
(Reineke, 2012).
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Cluster monomials from quiver representations

Theorem (Caldero–Chapoton, . . . , Derksen-Weyman-Z. 2010)
For each cluster monomial M of AQ, there is a representation
V of Q such that

M = mV
∑
e∈Nn

χ(Gre(V ))
n∏

j=1

(
n∏

i=1

xbji
i )ej

where
mV is an explicit monomial in x1, . . . , xn,
χ = Euler characteristic,
(bij) = BQ is the skew-symmetric matrix with

bij = #(arrows i → j in Q)−#(arrows j → i in Q).
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On the proof of the independence theorem

The proof of the independence theorem uses
a) the above explicit expressions

M = mV
∑
e∈Nn

χ(Gre(V ))
n∏

j=1

(
n∏

i=1

xbji
i )ej

b) precise information on V encoded in the cluster category
(Plamondon, Ph. D. thesis, 2011).
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Open problems

Generalize the independence theorem from quivers to
valued quivers (which correspond to skew-symmetrizable
matrices BQ). Partial results: . . . , Demonet 2011
Show that the coefficients of all cluster monomials are non
negative integers (FZ’s positivity conjecture).
Partial results:

. . .
Hernandez-Leclerc, Nakajima, Qin, Kimura–Qin (05/2012):
Q mutation-equivalent to a quiver without oriented cycles.
. . .
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Summary

Cluster algebras are commutative algebras with a rich
combinatorial structure.
They appear in a great variety of subjects ranging from
higher Teichmüller theory to discrete dynamical systems.
They contain the cluster monomials, which are linearly
independent but usually do not form a basis.
Do not forget to google quiver mutation!
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