Cluster algebras and cluster monomials

Bernhard Keller

Université Paris Diderot - Paris 7

6 ECM Kraków, 5 lipca 2012 roku

Context

Bernhard Keller Cluster algebras and cluster monomials

Hope (Fomin-Zelevinsky)

Each cluster algebra admits a 'canonical basis' containing the cluster monomials.

Conjecture (FZ, 2002)

The cluster monomials are linearly independent.

Theorem (Cerulli–Labardini–K–Plamondon, 2012)

The conjecture holds for all cluster algebras associated with quivers.

Some previous partial results

Caldero–K (2008), Fomin–Shapiro–Thurston (2008), Derksen–Weyman–Zelevinsky (2010), Demonet (2011), Plamondon (2011), Geiss–Leclerc–Schröer (2012).

Preliminaries: The Dynkin diagrams

- 2 Definitions: quiver mutation, cluster algebras
- 3 Linear independence: finite case, general case
- 4 Main tool of proof: Link to quiver representations

The Dynkin diagrams (of type ADE)

Bernhard Keller Cluster algebras and cluster monomials

A quiver is an oriented graph

Definition

A quiver Q is an oriented graph: It is given by

- a set *Q*₀ (the set of vertices)
- a set Q₁ (the set of arrows)
- two maps
 - $s: Q_1 \rightarrow Q_0$ (taking an arrow to its source)
 - $t: Q_1 \rightarrow Q_0$ (taking an arrow to its target).

Remark

A quiver is a 'category without composition'.

A quiver can have loops, cycles, several components.

Example

The quiver \vec{A}_3 : $1 \xrightarrow{\alpha} 2 \xrightarrow{\beta} 3$ is an orientation of the Dynkin diagram A_3 : $1 \xrightarrow{2} 2 \xrightarrow{3} 3$.

Definition of quiver mutation

Let *Q* be a finite quiver without loops nor 2-cycles (from now on always assumed).

Definition (Fomin-Zelevinsky)

Let $j \in Q_0$. The mutation $\mu_j(Q)$ is the quiver obtained from Q as follows

1) for each subquiver $i \xrightarrow{\beta} j \xrightarrow{\alpha} k$, add a new arrow

$$i \xrightarrow{[\alpha\beta]} k;$$

2) reverse all arrows incident with *j*;

 remove the arrows in a maximal set of pairwise disjoint 2-cycles (e.g. • ← yields • → • , '2-reduction').

Examples of quiver mutation

More complicated examples: Google 'quiver mutation'!

Recall: We wanted to define cluster algebras!

Seeds and their mutations

Definition

A seed is a pair (R, u), where

- a) R is a quiver with vertices $1, \ldots, n$.
- b) $u = \{u_1, \dots, u_n\}$ is a free generating set of the field $\mathbb{Q}(x_1, \dots, x_n)$.

Example:
$$(1 \rightarrow 2 \rightarrow 3, \{x_1, x_2, x_3\}) = (x_1 \rightarrow x_2 \rightarrow x_3).$$

Definition

For a vertex *j* of *R*, the mutation $\mu_j(R, u)$ is (R', u'), where

- a) $R' = \mu_j(R);$
- b) $u' = u \setminus \{u_j\} \cup \{u'_j\}$, with u'_j defined by the exchange relation

$$u_j u'_j = \prod_{\substack{\text{arrows}\ i o j}} u_i + \prod_{\substack{\text{arrows}\ j o k}} u_k.$$

An example

Clusters, cluster variables and the cluster algebra

Let Q be a quiver with n vertices.

Definition

- a) The initial seed is $(Q, x) = (Q, \{x_1, ..., x_n\}).$
- b) A cluster is an *n*-tuple u appearing in a seed (R, u) obtained from (Q, x) by iterated mutation.
- c) The cluster variables are the elements of the clusters.
- d) The cluster algebra A_Q is the subalgebra of the field $\mathbb{Q}(x_1, \ldots, x_n)$ generated by the cluster variables.
- e) A cluster monomial is a product of powers of cluster variables which all belong to the same cluster.

Remark

If Q is mutation equivalent to Q', then $\mathcal{A}_Q \xrightarrow{\sim} \mathcal{A}_{Q'}$.

Bernhard Keller Cluster algebras and cluster monomials

Sergey Fomin University of Michigan

Andrei Zelevinsky Northeastern University

Fundamental properties

Let Q be a connected quiver.

Theorem (Fomin-Zelevinsky, 2002)

- a) All cluster variables are Laurent polynomials.
- b) There is only a finite number of cluster variables iff Q is mutation-equivalent to an orientation d of a Dynkin diagram ∆. Then ∆ is unique and called the cluster type of Q.
- c) If Q = ∆, the non initial cluster variables are in canonical bijection with the positive roots of the associated root system.

Example: D₄.

Finite case

Theorem (Caldero-K, 2008)

The cluster monomials form a basis of the cluster algebra A_Q iff there is only a finite number of cluster variables.

Example: $Q = \vec{A}_2 = (1 \rightarrow 2)$

• There are 5 cluster variables

$$x_1 , x_2 , x_1' = \frac{1+x_2}{x_1} , x_2' = \frac{x_1+1+x_2}{x_1x_2} , x_1'' = \frac{1+x_1}{x_2}$$

- The clusters $u = \{u_1, u_2\}$ are the 5 pairs of consecutive cluster variables in the cyclic order.
- There are 5 families of cluster monomials $u_1^{m_1}u_2^{m_2}$, $m_1, m_2 \ge 0$. Their union is a basis.

Linear independence: general case

Theorem (Cerulli–Labardini–K–Plamondon, 2012)

The cluster monomials of any cluster algebra associated with a quiver are linearly independent.

Example: $Q: 1 \implies 2$ (Kronecker quiver)

• There are countably many cluster variables

 $\ldots , \ \textit{V}_{-1} \ , \ \textit{V}_0 \ , \ \textit{V}_1 = \textit{X}_1 \ , \ \textit{V}_2 = \textit{X}_2 \ , \ \textit{V}_3 \ , \ \textit{V}_4 \ , \ \ldots$

- The clusters u = {u₁, u₂} are all pairs of consecutive cluster variables {v_i, v_{i+1}}.
- There are countably many families of cluster monomials $u_1^{m_1}u_2^{m_2}$, $m_1, m_2 \ge 0$. Their union is linearly independent.

representation of a quiver = diagram of vector spaces

Let Q be a quiver with vertices $1, \ldots, n$, e.g.

Definition

A representation of Q is a diagram of finite-dimensional complex vector spaces of the shape given by Q.

Example

$$V_1 \xrightarrow{V_{\alpha}} V_2 \xrightarrow{V_{\beta}} V_4$$

The quiver Grassmannian

Let V be a representation of Q.

Definition

- A subrepresentation $V' \subset V$ is a family of subspaces $V'_i \subset V_i$ such that, for each arrow $\alpha : i \to j$, we have $V_{\alpha}(V'_i) \subset V'_j$.
- Let *e* ∈ Nⁿ. The quiver Grassmannian is the variety Gr_e(V) of all subrepresentations V' ⊂ V such that dim V'_i = e_i for all *i*.

Remarks

- $Gr_e(V)$ is a closed subvariety in $\prod_{i=1}^{n} Gr_{e_i}(V_i)$.
- Every projective variety is a quiver Grassmannian (Reineke, 2012).

Cluster monomials from quiver representations

Theorem (Caldero–Chapoton, ..., Derksen-Weyman-Z. 2010)

For each cluster monomial M of \mathcal{A}_Q , there is a representation V of Q such that

$$M = m_V \sum_{e \in \mathbb{N}^n} \chi(Gr_e(V)) \prod_{j=1}^n (\prod_{i=1}^n x_i^{b_{ij}})^{e_j}$$

where

- m_V is an explicit monomial in x_1, \ldots, x_n ,
- $\chi = Euler$ characteristic,
- $(b_{ij}) = B_Q$ is the skew-symmetric matrix with

$$b_{ij}=\#(a$$
rrows i $ightarrow$ j in Q $)-\#(a$ rrows j $ightarrow$ i in Q $).$

On the proof of the independence theorem

The proof of the independence theorem uses

a) the above explicit expressions

$$M = m_V \sum_{e \in \mathbb{N}^n} \chi(Gr_e(V)) \prod_{j=1}^n (\prod_{i=1}^n x_i^{b_{ji}})^{e_j}$$

b) precise information on *V* encoded in the cluster category (Plamondon, Ph. D. thesis, 2011).

Open problems

- Generalize the independence theorem from quivers to valued quivers (which correspond to skew-symmetrizable matrices B_Q). Partial results: ..., Demonet 2011
- Show that the coefficients of all cluster monomials are non negative integers (FZ's positivity conjecture). Partial results:
 - ...
 - Hernandez-Leclerc, Nakajima, Qin, Kimura–Qin (05/2012): *Q* mutation-equivalent to a quiver without oriented cycles.
 - . . .

Summary

- Cluster algebras are commutative algebras with a rich combinatorial structure.
- They appear in a great variety of subjects ranging from higher Teichmüller theory to discrete dynamical systems.
- They contain the cluster monomials, which are linearly independent but usually do not form a basis.
- Do not forget to google quiver mutation!