A natural sequence with all algebraic numbers $\& e, \pi$, etc.
Pierre Lanchon
pierre.lanchon@sfr.fr
Snecma, Safran Group

Abstract

We generate a list of objects of type number, function, functional, parameterized expression, etc. from which our sequence of numbers will be extracted. When 2 objects f and z are generated, then $f(z)$ will be generated later if f is an arrow and if the types of f and z are compatible. A ground generator gives the first three objects from "?" asked arround the arrows \circlearrowleft and \rightleftarrows : The identity polynomial function Z, the look for fixed points and for reciprocals. Then comes the seed which has here 1 object : the derivation functional ∂. The first generated objects are : Z, FixP, Recip, ∂, Func $1=\partial(Z), A e^{Z}=\operatorname{FixP}(\partial), \int_{A_{1}}^{Z} \cdot+A_{2}=$ $\operatorname{Recip}(\partial), 1=\operatorname{FixP}\left(\right.$ Func 1), Func $0=$ FFunc $1, e^{Z}, \int_{1}^{Z} \cdot+A, \int_{1}^{Z} \cdot+$ $1, \int_{A}^{Z}+1,0=F i x P($ Func 0$)$, List of FixP $\left(e^{Z}\right)$, List of Recip $\left(e^{Z}\right)$, $e,\left(Z^{2}+1\right) / 2, e^{Z-1}, e^{Z}-e+1, \ldots$, Smallest FixP $\left(e^{Z}\right), \ldots, \log (Z)$, $e^{Z+1}, \ldots, e^{e}, \ldots$ This sequence is useful in experimental mathematics. AMS Classification: Primary 11B83; Secondary 11Y55.

