Matchbox Dynamics

http://www.auburn.edu/ kuperkm/dynamicsKrakow2012/

ORGANIZER: Krystyna Kuperberg (*Auburn University, USA*) Monday, July 2, 17:15–19:15, Small Hall

TALKS:

Alex Clark (*Leicester University, UK*), COAUTHOR: Krystyna Kuperberg, **Spongy matchbox manifolds**

Steve Hurder (University of Illinois at Chicago, USA), Cohomology and smooth embeddings for matchbox manifolds

Olga Lukina (*Leicester University, UK*), **Dynamics of graph matchbox** manifolds

Ana Rechtman (*University of Strasbourg, FR*), COAUTHOR: Steven Hurder, **Topological entropy of the dynamics of the Kuperberg minimal set**

Spongy matchbox manifolds

Alex Clark Leicester University, UK

adc20@leicester.ac.uk

We shall examine the homogeneity properties of continua based on matchbox manifolds that locally are homeomorphic to the product of a Cantor set and a Menger manifold.

COAUTHORS: Krystyna Kuperberg

Cohomology and smooth embeddings for matchbox manifolds

Steve Hurder University of Illinois at Chicago, USA

hurder@uic.edu

We discuss the role of cohomology invariants for solenoids, and more generally minimal matchbox manifolds, for understanding their foliated embeddings into smooth (or possibly C^r for r > 0) foliations. In particular, we discuss relations between cohomology invariants associated to such embeddings, and the foliation dynamics, where the higher dimensional cases yield a much richer theory of invariants than for flows.

Dynamics of graph matchbox manifolds

Olga Lukina Leicester University, UK

A graph matchbox manifold is the closure of a leaf in the foliated space obtained by suspending a partial action of a free group on the space of pointed trees with Gromov-Hausdorff metric. This space was first constructed by R. Kenyon and É. Ghys, and it constitutes a class of examples where one can explicitly compute. In the talk I will present some recent results about dynamical and topological properties of graph matchbox manifolds.

Topological entropy of the dynamics of the Kuperberg minimal set

Ana Rechtman University of Strasbourg, FR rechtman@math.unistra.fr

In 1993 K. Kuperberg constructed examples of C^{∞} and real analytic flows without periodic orbits on any closed 3-manifold. In the talk, I will present part of a study of the minimal set of Kuperberg's examples. In particular, I will explain that these examples are at the boundary of the set of flows with positive topological entropy in the C^1 topology.

COAUTHORS: Steven Hurder