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The equation











∂2
t u = ∂2

xu + |u|p−1u,

u(0) = u0 and ut(0) = u1,

where p > 1, u(t) : x ∈ IR → u(x, t) ∈ IR, u0 ∈ H1(IR) and u1 ∈ L2(IR).

The Cauchy problem in H1 × L2(IR) is locally wellposed (Ginibre and Velo,
Lindblad and Sogge) and we have finite speed of propagation.

Maximal solution in H1(IR)×L2(IR)

- either it exists for all t ∈ [0, ∞) (global solution),

- or it exists for all t ∈ [0, T̄) (singular solution).

Existence of singular solutions (Levine)

if
∫

IR

(

1
2 (u1)

2 + 1
2 (∂xu0)2 − 1

p+1 |u0|p+1
)

dx < 0, then u is not global.
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Singular solutions: the maximal influence domain, characteristic points

t

T

0

t=T(x)

x

Du

a

slope delta <1

(slope 1)light cone

For all x ∈ IR, there exists a “local” blow-up time T(x) (T̄ = inf T(x) is the
blow-up time).

A point a is said non characteristic if the domain contains a cone with vertex
(a, T(a)) and slope δ < 1. The point is said characteristic if not.
R ⊂ IR is the set of non characteristic points (S ⊂ IR of characteristic points).
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Known results, for an arbitrary solution

- The blow-up set Γ = {(x, T(x))} is 1-Lipschitz.

- R &= ∅ (Indeed, x̄ such that T(x̄) = minx∈IR T(x) is non characteristic).

- Caffarelli and Friedman (1985 and 1986) had a criteria to have R = IR,

x '→ T(x) of class C1 and ODE blow-up (using the positivity of the
fundamental solution):
under conditions on initial data that ensure that for some δ0 > 0,

u ≥ 0 and ∂tu ≥ (1 + δ0)|∂xu|.

The aim of this talk:
- To describe precisely the blow-up set, and the solution near the blow-up set,
for an arbitrary blow-up solution. Is the example of Caffarelli and Friedman gives

the full picture.
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Questions and new results

! Existence
- Are there characteristic points? yes, S &= ∅.

! Regularity
- Is R open? yes

- Is Γ of class C1 ? yes on R
- “How is” S? isolated points
- How does Γ look like near S? corner shaped

! Asymptotic behavior (profile)
- How does the solution behave near a non characteristic point? we have
the profile
- and near a characteristic point? we have a precise decomposition into
solitons

! Construction
- All the possibilities described just above do occur.
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Part 1: Existence of characteristic points

Prop. (M.Z.) There exist initial data which give solutions with a characteristic point.

Example: We take odd initial data.

- Then, if the solution blows up then the origin is a characteristic point.

- If we perturb the constructed initial data, then the new solution blows up and
has a characteristic point near zero.

- In addition, if (locally) the solution is positive, there are no characteristic
points.
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Regularity of the blow-up set

Th. (M.Z.) The set of non characteristic points R is open and T(x) is of class C1

on this set.

Th. (M.Z.) The set of characteristic points S is made of isolated points.
Moreover,

T(x)− T(a) + |x − a| ∼
C±

0 |x − a|

| log |x − a||γ(a)
as x → a±, (1)

where γ(a) = (k(a)−1)(p−1)
2 with k(a) ∈ N, k(a) ≥ 2.

t=T(x)

x

(a,T(a))
t
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Blow-up speed or the L∞ norm behavior

Cor.
(i) (Case of non-characteristic points) If x0 ∈ R, then

(T(x0)− t)−
2

p−1

C
≤ sup

|x−x0|<T(x0)−t

|u(x, t)| ≤ C(T(x0)− t)−
2

p−1

(i) (Case of characteristic points) If x0 ∈ S , then

| log(T(x0)− t)|
k(x0)−1

2

C(T(x0)− t)
2

p−1

≤ sup
|x−x0|<T(x0)−t

|u(x, t)| ≤
C| log(T(x0)− t)|

k(x0)−1
2

(T(x0)− t)
2

p−1

.

where k(x0) ≥ 2 is the solitons’ number in the decomposition of wx0 .

Rk.
When x0 ∈ R, the speed is given by the associated ODE u′′ = up.
When x0 ∈ S , the speed is higher. It has a log correction depending on the

number of solitons.
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Idea of the proof

The techniques are based on

! - a very good understanding of the behavior of the solution in
selfsimilar variables in the energy space related to the selfsimilar
variable (see Part 3 of this talk).

! - a Liouville Theorem (see next slide).
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A Liouville Theorem

Th. (M.Z.) Consider u(x, t) a solution of utt = uxx + |u|p−1u such that:

- u is defined in the infinite green cone and u is less than (T∗ − t)−
2

p−1 (to

avoid periodic in space solution). Then,
- either u ≡ 0,
- or there exists T0, d0 and θ0 = ±1 such that u is defined below the red line by

u(x, t) = θ0κ0(p)
(1 − d2

0)
1

p−1

(T0 − t + d0(x − x∗))
2

p−1

.

(x*,T*)

t

x

Light cone

cone of slope delta*

eq: T_0−t+d_0(x−x*)=0
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Part 3: Selfsimilar variable

Selfsimilar transformation for all x0 ∈ IR

wx0(y, s) = (T(x0)− t)
2

p−1 u(x, t), y =
x − x0

T(x0)− t
, s = − log(T(x0)− t).

(x, t) in the light cone of vertex (x0, T(x0)) ⇐⇒ (y, s) ∈ (−1, 1)× [− log T(x0), ∞).

Equation on w = wx0 : For all (y, s) ∈ (−1, 1)× [− log T(x0), ∞):

∂2
ssw − 1

ρ ∂y(ρ(1 − y2)∂yw) + 2(p+1)
(p−1)2 w − |w|p−1w

= − p+3
p−1 ∂sw − 2y∂2

syw

where ρ(y) = (1 − |y|2)
2

p−1
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Blow-up profile at a non characteristic point

Th. (M.Z.) There exist C0 > 0 and µ0 > 0 such that
if x0 is non characteristic, then there exist d(x0) ∈ (−1, 1), e(x0) = ±1 such that:
(i) For all s ≥ s∗(x0),

∥

∥

∥

∥

∥

(

wx0 (s)

∂swx0 (s)

)

− e(x0)

(

κ(d(x0), ·)

0

)
∥

∥

∥

∥

∥

H

≤ C0e−µ0(s−s∗)

and E(wx0(s) → E(κ0) where the energy space (ii) d(x0) = T′(x0).
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Asymptotic behavior at a characteristic point

Th. (M.Z. ) If x0 ∈ IR is characteristic, then, there exist k(x0) ≥ 2, e(x0) = ±1
and di(s) = − tanh ζi(s) such that:
(i)

∥

∥

∥

∥

∥

(

wx0(s)

∂swx0(s)

)

− e(x0)
k(x0)

∑
i=1

(−1)i

(

κ(di(s), ·)

0

)
∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

(ii) Introducing ζi(s) = − tanh−1 di(s), we get

1

c1
ζ ′i(s) = e−

2
p−1 (ζi−ζi−1)− e−

2
p−1 (ζi+1−ζi) and ζi(s) =

(

i −
(k + 1)

2

)

(p − 1)
2

log s+Ci

(ii) E(wx0(s)) → k(x0)E(κ0) as s → ∞.
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Asymptotic behavior at a characteristic point (cont.)

Rk.
- As s → ∞, wx0 becomes like a decoupled sum of equidistant stationary

solutions (“solitons”), with alternate signs.
- The main difficulty in the proof is to prove that k(x0) ≥ 2 (the case k(x0) = 0
is harder to eliminate).
- As a conscequence, we have an energy criterion for non characteristic points:
If

E(wx0(s0)) < 2E(κ0),

then x0 ∈ R.
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Construction of blow-up modalities in the characteristic case

Th. (Côte-Zaag): Given k ≥ 2 and ζ0 ∈ IR, there exists a solution u(x, t) such
that 0 ∈ S and

∥

∥

∥

∥

∥

(

wx0 (s)

∂sw0(s)

)

−
k

∑
i=1

(−1)i

(

κ(di(s), ·)

0

)
∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

with di(s) = − tanh ζi(s), ζi(s) = ζ̄i(s) + ζ0 and (ζ̄i(s))i is THE solution of

1

c1
ζ̄ ′i(s) = e−

2
p−1 (ζ̄i−ζ̄i−1) − e−

2
p−1 (ζ̄i+1−ζ̄i) with ζ̄1(s) + · · ·+ ζ̄k(s) ≡ 0.

Remark: There is version with {xn} a discrete subset of IR.
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A Lyapunov functional (Antonini-Merle)

E(w) =
∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − y2) +

(p + 1)

(p − 1)2
w2 −

1

p + 1
|w|p+1

)

ρdy,

ao a Hardy-Sobolev inequality, well defined in the energy space

H =

{

q ∈ H1
loc × L2

loc(B) | ‖q‖2
H ≡

∫ 1

−1

(

q2
1 +

(

∂yq1
)2 (1 − y2) + q2

2

)

ρdy < +∞

}

.

Lemma 1 (Monotonicity (Antonini-Merle)) For all s1 and s2:

E(w(s2))− E(w(s1)) = −
4

p − 1

∫ s2

s1

∫ 1

−1
(∂sw)2(1 − |y|2)

2
p−1 −1dyds.
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An upper bound in selfsimilar variables

Prop. (M.Z.) For all x0 ∈ IR and s ≥ − log T(x0) + 1,

∫ 1

−1

(

1

2
(∂sw)2 +

1

2
(∂yw)2(1 − |y|2) +

(p + 1)

(p − 1)2
w2 +

1

p + 1
|w|p+1

)

ρdy ≤ K.

Idea of the proof of the upper bound are
- Selfsimilar transformation and existence of a Lyapunov functional
- Gagliardo-Nirenberg estimates in the energy space H.

All stationary solutions of the w equation in H are
either w ≡ 0 or there exist d ∈ (−1, 1) and e = ±1 such that w(y) = eκ(d, y)
where

∀(d, y) ∈ (−1, 1)2, κ(d, y) = κ0
(1 − d2)

1
p−1

(1 + dy)
2

p−1

and κ0 =

(

2(p + 1)

(p − 1)2

)
1

p−1

.

Remark: We have 3 connected components. E(0) = 0 < E(±κ(d)) = E(κ0).
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Asymptotic behavior at a non characteristic point

Take x0 ∈ IR non characteristic. Using a covering argument for x near x0, we
obtain that ‖(wx0(s), ∂swx0(s))‖H1×L2(−1,1) is bounded. Similar techniques will

hold in H for characteristic point using the critically of this space with respect
to the dispersion.

Question: Does wx0 (y, s) have a limit or not, as s → ∞ (that is as t → T(x0)).
In the context of Hamiltonian systems, this question is delicate, and there is
no natural reason for such a convergence, since the wave equation is time

reversible. See for similar difficulty and approach, results for the L2 critical

KdV (Martel and Merle, Martel,M., Raphael), L2 critical NLS (Merle and
Raphaël).

! The set of non zero stationary solutions is made up of non isolated
solutions (one parameter family):
−→ we need a modulation technique.

! The linearized operator around a non zero stationary solution is non
self-adjoint:
−→ we need to use dispersive properties coming from the Lyapunov
functional to control the negative part of the spectrum.
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Idea of the proof of the results in the characteristic case

The results are: the decomposition into solitons, the corner property and the
fact that S is made of isolated points.

4 main steps are needed:

! Step 1: Decomposition into a decoupled sum of k(x0) ≥ 0 solitons, with
no information on the signs or the distance between the solitons’
centers.

! Step 2: Characterization of the case k(x0) ≥ 2. Proof of the upper bound
in the corner property if k(x0) ≥ 2.

! Step 3: Excluding the case k(x0) = 0, 1 if x0 ∈ ∂S and ∂S = S .

! Step 4: We prove that S is made of isolated points.
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Step 1: Decomposition into a decoupled sum of k(x0) ≥ 0 solitons

By similar dispersive argument than in non characteristic case, critically of H
for the dispersive relation, we have
Prop.There exist k(x0) ≥ 0 and continuous di(s) ∈ (−1, 1) such that

∥

∥

∥

∥

∥

(

wx0(s)

∂swx0(s)

)

−
k(x0)

∑
i=1

ei(x0)

(

κ(di(s), ·)

0

)
∥

∥

∥

∥

∥

H

→ 0 as s → ∞,

with ζi+1(s)− ζi(s) → ∞ as s → ∞ and di(s) = − tanh ζi(s).

Rk.

! k(x0) = 0, 1 is not excluded. The sum is finite from the fact that the

energy of all stationary solution is E(κ0) together with the fact that the
energy of the solution is bounded , then the above sum is 0.

! We have no information on the signs ei(x0).

! We have no equivalent for ζi(s) as s → ∞.
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Step 2: Case k(x0) ≥ 2; A differential equation on the solitons’ centers

Here, we assume that k(x0) ≥ 2 (we don’t prove that fact here).

Linearizing the equation in the w(y, s) setting around the sum of the solitons,
and using again the dispersive effect to justify the next order of appriximation,
we get the following system on the solitons’ centers in the ξ variable:
for all i = 1, ..., k and s large enough, we have

1

c1
ζ ′i ∼ −ei−1eie

− 2
p−1 (ζi−ζi−1) + eiei+1e−

2
p−1 (ζi+1−ζi).

Since for all i, we have ζi+1(s)− ζi(s) → ∞ as s → ∞, using ODE techniques,
we find that

eiei+1 = −1 and ζi(s) ∼

(

i −
k(x0) + 1

2

)

(p − 1)
2

log s.

The upper bound on the blow-up rate gives the upper bound in the corner
property.
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Step 3: Excluding the case where x0 ∈ S and k(x0) = 0, 1

A good understading of the non-characteristic case is crucial. By contradiction,

- if x0 ∈ ∂S and k(x0) = 0 with a minimal property, then

‖wx0(s)‖H → 0 as s → ∞. and for a x1 ∈ R near x0 and s1,

E(wx1(s0)) ≤
1
2 E(κ0). Contradiction.

- The case x0 ∈ ∂S and k(x0) = 1 for again a minimal element of this type is
again delicate. we first use a traping result on the parameter d, its geometrical
interpretation to conclude a contradiction.

- We conclude that the interior of S is empty using the previous results and the
decomposition of the solution. Contradiction.

In particular, we show that for all a ∈ S , we have k(a) ≥ 2.
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Step 4: S is made of isolated point

Consider a ∈ S . We would like to prove that for x ∼ a and x &= a, x ∈ R.

Goal: Prove

‖wx(s
∗)± κ (d∗) ‖H ≤ ε0,

for s∗ = | log |x − a||+ L and d∗ = d∗(x) and L large. Thus,

E(wx(s
∗)) ≤

3

2
E(κ0)

and x is non-characteristic.

For that, we introduice κ∗1(d,±es) the heteroclinic orbits connecting κ(d) to 0 or

to ∞, where

κ∗1 (d, ν, y) = κ0
(1 − d2)

1
p−1

(1 + dy + ν)
2

p−1

.

3 Steps are needed. The main difficulty is that wx(y, s) depends on T(x),
which is an unknown in the problem.
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Step 4: S is made of isolated point (cont.)

- (Initialization):
Decomposition of wa for s large and continuity arguments to show that for small

ε > 0 and L̄ > 0

‖wx(L̄)− e
k

∑
i=1

(−1)i+1κ∗1 (di(L̄), µi(L̄))‖H ≤ ε.

- (Stability of the decomposition of wx):

Stability of this decomposition is stable in time (until the centers are not "far")

implies that we propagate this decomposition from s = L̄ to
s = | log |x − a||+ L

sup
L̄≤s≤| log |x−a||+L

∥

∥

∥

∥

∥

wx(s)− e
k

∑
i=1

(−1)i+1κ∗1 (di(s), µi(s))

∥

∥

∥

∥

∥

H

→ 0

as L̄ → ∞, L → ∞ and x → a, for some parameters (di(s), µi(s)).
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Step 4: S is made of isolated point (cont.)

- (Using information coming from the decomposition of wa(y, s)):
From the two decomposition of wx and wa in the intersection of the backward
light cones with vertexes (a, T(a)) and (x, T(x))and the fact that they have to
agree up to error terms

∥

∥

∥

∥

∥

k

∑
i=2

(−1)i+1κ∗1 (di(s), µi(s))

∥

∥

∥

∥

∥

H

→ 0

for

s = | log |x − a||+ L.

The conclusion follows.
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