Random maps and continuum random 2-dimensional geometries

Grégory Miermont

Université de Paris-Sud 11, Orsay \& CNRS/PIMS
6th European Congress of Mathematics
Kraków, Poland
Wednesday, July 4th 2012

Plane maps

Definition

A plane map is an embedding of a connected, finite (multi)graph into the 2-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

A rooted map: distinguish one oriented edge.

Plane maps

Definition

A plane map is an embedding of a connected, finite (multi)graph into the 2-dimensional sphere, considered up to orientation-preserving homeomorphisms of the sphere.

$V(\mathbf{m})$ Vertices
$E(\mathbf{m})$ Edges
$F(\mathbf{m})$ Faces
$d_{\mathbf{m}}(u, v)$ graph distance

A rooted map: distinguish one oriented edge.

Motivation

- Maps are seen as discretized 2D Riemannian manifolds.
- This comes from 2D quantum gravity, in which a basic object is the partition function

$$
\int_{\mathcal{R}(M) / \operatorname{Diff}^{+}(M)}[\mathcal{D} g] \exp \left(-\alpha \operatorname{Area}_{g}(M)\right)
$$

- M is a 2-dimensional orientable manifold,
- $\mathcal{R}(M)$ is the space of Riemannian metrics on M,
- $\operatorname{Diff}^{+}(M)$ the set of orientation-preserving diffeomorphisms,
- $\mathcal{D} g$ is a "Lebesgue" measure on $\mathcal{R}(M)$ invariant under the action of $\operatorname{Diff}^{+}(M)$. This, and the induced measure $[\mathcal{D} g]$, are the problematic objects.

How to deal with $[\mathcal{D} g]$?

One can replace

$$
\int_{\mathcal{R}(M) / \operatorname{Diff}^{+}(M)}[\mathcal{D} g] \longrightarrow \sum_{T \in \operatorname{Tr}(M)} \delta_{T}
$$

where $\operatorname{Tr}(M)$ is the set of triangulations of M.

- Then one tries to take a scaling limit of the right-hand side, in which triangulations approximate a "smooth", continuum surface.
- Analog to path integrals, in which random walks can be used to approximate Brownian motion.
- The success of this approach comes from the rich literature on enumerative theory of maps, after Tutte's work or the literature on matrix integrals.
- However, metric aspects of maps could only be dealt with recently, using bijective approaches.
- Another approach: Liouville quantum gravity (Polyakov, David, Duplantier-Sheffield...).

How to choose a random map

All maps we consider are rooted.

- pick a p-angulation with n vertices, uniformly at random (ex $p=3$ triangulation, $p=4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree), mostly for technical simplicity.
- Boltzmann distribution: let $w=\left(w_{k}, k \geq 1\right)$ be a non-negative non-zero sequence, $w_{1}<1$. Define a measure by

m rooted, bipartite
- Let

$$
\mathbb{B}_{w}^{n}(\cdot)=\mathbb{B}_{w}(\cdot \mid\{\mathbf{m} \text { with } n \text { vertices }\})
$$

defining a probability measure. Uniform on $2 p$-angulations with n vertices if $w_{k}=\delta_{k p}$.

How to choose a random map

All maps we consider are rooted.

- pick a p-angulation with n vertices, uniformly at random (ex $p=3$ triangulation, $p=4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree), mostly for technical simplicity.
- Boltzmann distribution: let $w=\left(w_{k}, k \geq 1\right)$ be a non-negative non-zero sequence, $w_{1}<1$. Define a measure by

$W_{\text {deg }}(f) / 2$
m rooted, bipartite
- Let

defining a probability measure. Uniform on $2 p$-angulations with n vertices if $w_{k}=\delta_{k p}$.

How to choose a random map

All maps we consider are rooted.

- pick a p-angulation with n vertices, uniformly at random (ex $p=3$ triangulation, $p=4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree), mostly for technical simplicity.
- Boltzmann distribution: let $w=\left(w_{k}, k \geq 1\right)$ be a non-negative non-zero sequence, $w_{1}<1$. Define a measure by

$$
\mathbb{B}_{w}(\mathbf{m})=\prod_{f \in F(\mathbf{m})} w_{\operatorname{deg}(f) / 2}, \quad \mathbf{m} \text { rooted, bipartite }
$$

- Let

defining a probability measure. Uniform on $2 p$-angulations with n vertices if $w_{k}=\delta_{k p}$.

How to choose a random map

All maps we consider are rooted.

- pick a p-angulation with n vertices, uniformly at random (ex $p=3$ triangulation, $p=4$ quadrangulation)
- From now on we only consider bipartite plane maps (with faces of even degree), mostly for technical simplicity.
- Boltzmann distribution: let $w=\left(w_{k}, k \geq 1\right)$ be a non-negative non-zero sequence, $w_{1}<1$. Define a measure by

$$
\mathbb{B}_{w}(\mathbf{m})=\prod_{f \in F(\mathbf{m})} w_{\operatorname{deg}(f) / 2}, \quad \mathbf{m} \text { rooted, bipartite }
$$

- Let

$$
\mathbb{B}_{w}^{n}(\cdot)=\mathbb{B}_{w}(\cdot \mid\{\mathbf{m} \text { with } n \text { vertices }\})
$$

defining a probability measure. Uniform on $2 p$-angulations with n vertices if $w_{k}=\delta_{k p}$.

Simulation of a uniform random plane quadrangulation with 30000 vertices, by J.-F. Marckert

- Q_{n} uniform random variable in the set \mathbf{Q}_{n}, of rooted plane quadrangulations with n faces (law $\mathbb{B}_{\delta_{2}}^{n+2}$)
- The set $V\left(Q_{n}\right)$ of its vertices is endowed with the graph distance

Simulation of a uniform random plane quadrangulation with 30000 vertices, by J.-F. Marckert

- Q_{n} uniform random variable in the set \mathbf{Q}_{n}, of rooted plane quadrangulations with n faces (law $\mathbb{B}_{\delta_{2}}^{n+2}$)
- The set $V\left(Q_{n}\right)$ of its vertices is endowed with the graph distance $d_{Q_{n}}$.
- Typically $d_{Q_{n}}(u, v)$ scales like $n^{1 /}$ (Chassaing-Schaeffer (2004)).

Simulation of a uniform random plane quadrangulation with 30000 vertices, by J.-F. Marckert

- Q_{n} uniform random variable in the set \mathbf{Q}_{n}, of rooted plane quadrangulations with n faces (law $\mathbb{B}_{\delta_{2}}^{n+2}$)
- The set $V\left(Q_{n}\right)$ of its vertices is endowed with the graph distance $d_{Q_{n}}$.
- Typically $d_{Q_{n}}(u, v)$ scales like $n^{1 / 4}$ (Chassaing-Schaeffer (2004)).

Convergence to the Brownian map

Theorem

There exists a random metric space (S, D^{*}), called the Brownian map, such that the following convergence in distribution holds

$$
\left(V\left(Q_{n}\right),(8 n / 9)^{-1 / 4} d_{Q_{n}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(S, D^{*}\right)
$$

as $n \rightarrow \infty$, for the Gromov-Hausdorff topology.

$$
\begin{aligned}
& \text { This result has been proved independently by Le Gall (2011) and } \\
& \text { Miermont (2011), via different approaches. Also universality } \\
& \text { results in Le Gall (2011). } \\
& \text { Before this work, convergence was only known up to extraction of } \\
& \text { subsequences, but the uniqueness of the limiting law was open. }
\end{aligned}
$$

Convergence to the Brownian map

Theorem

There exists a random metric space (S, D^{*}), called the Brownian map, such that the following convergence in distribution holds

$$
\left(V\left(Q_{n}\right),(8 n / 9)^{-1 / 4} d_{Q_{n}}\right) \xrightarrow[n \rightarrow \infty]{(d)}\left(S, D^{*}\right)
$$

as $n \rightarrow \infty$, for the Gromov-Hausdorff topology.

- This result has been proved independently by Le Gall (2011) and Miermont (2011), via different approaches. Also universality results in Le Gall (2011).
- Before this work, convergence was only known up to extraction of subsequences, but the uniqueness of the limiting law was open.

Some of the previous results on random maps

- Chassaing-Schaeffer (2004)
- identify $n^{1 / 4}$ as the proper scaling and
- compute limiting functionals for random quadrangulations.
- Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) introduce the Brownian map.
- Le Gall (2007)
- Gromov-Hausdorff tightness for rescaled 2p-angulations
- the limiting topology is the same as that of the Brownian map.
- all subsequential limits have Hausdorff dimension 4
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

Some of the previous results on random maps

- Chassaing-Schaeffer (2004)
- identify $n^{1 / 4}$ as the proper scaling and
- compute limiting functionals for random quadrangulations.
- Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) introduce the Brownian map.
- Le Gall (2007)
- Gromov-Hausdorff tightness for rescaled $2 p$-angulations
- the limiting topology is the same as that of the Brownian map. v all subsequential limits have Hausdorl dimension 4
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2-sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

Some of the previous results on random maps

- Chassaing-Schaeffer (2004)
- identify $n^{1 / 4}$ as the proper scaling and
- compute limiting functionals for random quadrangulations.
- Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) introduce the Brownian map.
- Le Gall (2007)
- Gromov-Hausdorff tightness for rescaled $2 p$-angulations
- the limiting topology is the same as that of the Brownian map.
- all subsequential limits have Hausdorff dimension 4
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

Some of the previous results on random maps

- Chassaing-Schaeffer (2004)
- identify $n^{1 / 4}$ as the proper scaling and
- compute limiting functionals for random quadrangulations.
- Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) introduce the Brownian map.
- Le Gall (2007)
- Gromov-Hausdorff tightness for rescaled $2 p$-angulations
- the limiting topology is the same as that of the Brownian map.
- all subsequential limits have Hausdorff dimension 4
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2 -sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

Some of the previous results on random maps

- Chassaing-Schaeffer (2004)
- identify $n^{1 / 4}$ as the proper scaling and
- compute limiting functionals for random quadrangulations.
- Generalized by Marckert-M. (2007), M. (2008) to the larger class of Boltzmann random maps.
- Marckert-Mokkadem (2006) introduce the Brownian map.
- Le Gall (2007)
- Gromov-Hausdorff tightness for rescaled $2 p$-angulations
- the limiting topology is the same as that of the Brownian map.
- all subsequential limits have Hausdorff dimension 4
- Le Gall-Paulin (2008), and later M. (2008) show that the limiting topology is that of the 2 -sphere.
- Bouttier-Guitter (2008) identify the limiting joint law of distances between three uniformly chosen vertices.

The Cori-Vauquelin-Schaeffer bijection: coding maps with trees

- Let \mathbf{T}_{n} be the set of rooted plane trees with n edges,
- \mathbb{T}_{n} be the set of labeled trees (\mathbf{t}, \mathbf{I}) where $\mathbf{I}: V(\mathbf{t}) \rightarrow \mathbb{Z}$ satisfies \mathbf{I} (root) $=0$ and

$$
|\mathbf{I}(u)-\mathbf{I}(v)| \leq 1, \quad u, v \text { neighbors } .
$$

The Cori-Vauquelin-Schaeffer bijection: coding maps with trees

- Let \mathbf{T}_{n} be the set of rooted plane trees with n edges,
- \mathbb{T}_{n} be the set of labeled trees (\mathbf{t}, \mathbf{I}) where $\mathbf{I}: V(\mathbf{t}) \rightarrow \mathbb{Z}$ satisfies I (root) $=0$ and

$$
|\mathbf{I}(u)-\mathbf{I}(v)| \leq 1, \quad u, v \text { neighbors }
$$

Theorem (Cori-Vauquelin 1981, Schaeffer)

The construction to follow yields a bijection between $\mathbb{T}_{n} \times\{0,1\}$ and \mathbf{Q}_{n}^{*}, the set of rooted, pointed plane quadrangulations with n faces.

CVS bijection

Note that the labels are geodesic distances in the map. Key formula:

$$
d_{\mathbf{q}}\left(v_{*}, v\right)=\mathbf{I}(v)-\inf \mathbf{I}+1
$$

Scaling limits for plane trees: Aldous' CRT

- The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_{n} of \mathbf{T}_{n} :

$$
\left(V\left(T_{n}\right),(2 n)^{-1 / 2} d_{T_{n}}\right) \rightarrow \mathcal{T}
$$

for the Gromov-Hausdorff distance.

Scaling limits for plane trees: Aldous' CRT

- The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_{n} of \mathbf{T}_{n} :

$$
\left(V\left(T_{n}\right),(2 n)^{-1 / 2} d_{T_{n}}\right) \rightarrow \mathcal{T}
$$

for the Gromov-Hausdorff distance.

- Note that a tree with n edges can be encoded by a walk (Harris encoding): let $u_{i}, 0 \leq i \leq 2 n$ be the $i+1$-th explored vertex in contour order (started at the root). Let C_{i} the height of u_{i}.

Scaling limits for plane trees: Aldous' CRT

- The Brownian tree arises as the scaling limit of many discrete random tree models, e.g. uniform random element T_{n} of \mathbf{T}_{n} :

$$
\left(V\left(T_{n}\right),(2 n)^{-1 / 2} d_{T_{n}}\right) \rightarrow \mathcal{T}
$$

for the Gromov-Hausdorff distance.

- Note that a tree with n edges can be encoded by a walk (Harris encoding): let $u_{i}, 0 \leq i \leq 2 n$ be the $i+1$-th explored vertex in contour order (started at the root). Let C_{i} the height of u_{i}.

The Harris walk is a random walk conditioned to be non-negative and to be at 0 at time $2 n$.

The Brownian CRT

- Let T_{n} be uniform in \mathbf{T}_{n}, and C^{n} be its contour process. As $n \rightarrow \infty$, the process
$\left((2 n)^{-1 / 2} C_{[2 n t]}^{n}, 0 \leq t \leq 1\right)$ converges in distribution to a normalized Brownian
excursion ($\mathrm{e}_{t}, 0 \leq t \leq 1$).
- Define

$d_{\mathbb{e}}(s, t)=\mathbb{e}_{s}+\mathbb{E}_{t}-2$
inf

This is a pseudo-distance on $[0,1]$. The continuum random tree is the quotient space $\mathcal{T}_{\mathbb{e}}=[0,1] / \sim_{\mathbb{e}}$, where

The Brownian CRT

- Let T_{n} be uniform in \mathbf{T}_{n}, and C^{n} be its contour process. As $n \rightarrow \infty$, the process
$\left((2 n)^{-1 / 2} C_{[2 n t]}^{n}, 0 \leq t \leq 1\right)$ converges in distribution to a normalized Brownian
excursion ($\mathrm{e}_{t}, 0 \leq t \leq 1$).
- Define
$d_{\mathbb{e}}(s, t)=\mathbb{e}_{s}+\mathbb{E}_{t}-2 \inf _{s \wedge t \leq u \leq s \vee t} \mathbb{E}_{u}$.
This is a pseudo-distance on $[0,1]$. The continuum random tree is the quotient space $\mathcal{T}_{\mathbb{e}}=[0,1] / \sim_{\mathbb{e}}$, where $s \sim t \Longleftrightarrow d_{\mathrm{e}}(s, t)=0$. It defines an \mathbb{R}-tree.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let Z be a centered Gaussian process run on \mathcal{T}, with covariance function
$\operatorname{Cov}\left(Z_{a}, Z_{b}\right)=d_{\mathcal{T}}($ root,$a \wedge b)$,
$a \wedge b$ the most recent common
ancestor of a, b.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let Z be a centered Gaussian process run on \mathcal{T}, with covariance function
$\operatorname{Cov}\left(Z_{a}, Z_{b}\right)=d_{\mathcal{T}}($ root,$a \wedge b)$,
$a \wedge b$ the most recent common ancestor of a, b.

Brownian labels on the Brownian tree

- Once the tree is build, one can consider a white noise supported by the tree, or, equivalently, branching Brownian paths.
- Informally, we let Z be a centered Gaussian process run on \mathcal{T}, with covariance function
$\operatorname{Cov}\left(Z_{a}, Z_{b}\right)=d_{\mathcal{T}}($ root,$a \wedge b)$,

$a \wedge b$ the most recent common ancestor of a, b.

Convergence of labeled trees

- Let $\left(T_{n}, \ell_{n}\right)$ be uniform in \mathbb{T}_{n}. Then

$$
\left(\frac{1}{\sqrt{2 n}} T_{n},\left(\frac{9}{8 n}\right)^{1 / 4} \ell_{n}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\mathcal{T}_{\mathbb{e}}, Z\right)
$$

e.g. in the sense of convergence of contour encoding functions.

- We want to apply to $\left(\mathcal{T}_{\odot}, Z\right)$ a similar construction as the CVS bijection.
- The Brownian map is a quotient of T_{e} by the equivalence relation generated by

$$
\left\{(a, b): Z_{a}=Z_{b}=\min _{[a, b]} Z\right\}
$$

where $[a, b]$ is the interval from a to b around $\mathcal{T}_{\text {e }}$.
The resulting quotient set is endowed with a distance D such that

Convergence of labeled trees

- Let $\left(T_{n}, \ell_{n}\right)$ be uniform in \mathbb{T}_{n}. Then

$$
\left(\frac{1}{\sqrt{2 n}} T_{n},\left(\frac{9}{8 n}\right)^{1 / 4} \ell_{n}\right) \underset{n \rightarrow \infty}{\stackrel{(d)}{\longrightarrow}}\left(\mathcal{T}_{\mathbb{C}}, Z\right)
$$

e.g. in the sense of convergence of contour encoding functions.

- We want to apply to $\left(\mathcal{T}_{\mathrm{e}}, Z\right)$ a similar construction as the CVS bijection.
- The Brownian map is a quotient of \mathcal{T}_{e} by the equivalence relation generated by

$$
\left\{(a, b): Z_{a}=Z_{b}=\min _{[a, b]} Z\right\}
$$

where $[a, b]$ is the interval from a to b around $\mathcal{T}_{\text {e }}$.
The resulting quotient set is endowed with a distance D such that

Convergence of labeled trees

- Let $\left(T_{n}, \ell_{n}\right)$ be uniform in \mathbb{T}_{n}. Then

$$
\left(\frac{1}{\sqrt{2 n}} T_{n},\left(\frac{9}{8 n}\right)^{1 / 4} \ell_{n}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\mathcal{T}_{\mathbb{e}}, Z\right)
$$

e.g. in the sense of convergence of contour encoding functions.

- We want to apply to $\left(\mathcal{T}_{\mathrm{e}}, Z\right)$ a similar construction as the CVS bijection.
- The Brownian map is a quotient of $\mathcal{T}_{\mathbb{e}}$ by the equivalence relation generated by

$$
\left\{(a, b): Z_{a}=Z_{b}=\min _{[a, b]} Z\right\}
$$

where $[a, b]$ is the interval from a to b around $\mathcal{T}_{\mathbb{C}}$.

Convergence of labeled trees

- Let $\left(T_{n}, \ell_{n}\right)$ be uniform in \mathbb{T}_{n}. Then

$$
\left(\frac{1}{\sqrt{2 n}} T_{n},\left(\frac{9}{8 n}\right)^{1 / 4} \ell_{n}\right) \xrightarrow[n \rightarrow \infty]{\stackrel{(d)}{\longrightarrow}}\left(\mathcal{T}_{\mathbb{C}}, Z\right)
$$

e.g. in the sense of convergence of contour encoding functions.

- We want to apply to $\left(\mathcal{T}_{\mathrm{e}}, Z\right)$ a similar construction as the CVS bijection.
- The Brownian map is a quotient of $\mathcal{T}_{\mathbb{e}}$ by the equivalence relation generated by

$$
\left\{(a, b): Z_{a}=Z_{b}=\min _{[a, b]} Z\right\}
$$

where $[a, b]$ is the interval from a to b around $\mathcal{T}_{\mathbb{e}}$.

- The resulting quotient set is endowed with a distance D such that

$$
D\left(a, a^{*}\right)=Z_{a}-\inf Z
$$

if $a \in \mathcal{T}_{\mathbb{e}}$ and $a^{*}=\operatorname{argmin}(Z)$. Other distances $D(a, b), a, b \neq a_{*}$?

Shape of the typical geodesics

- An important point is to describe precisely the geodesic γ between two "generic" points x_{1}, x_{2}. More precisely, one must show that it is a patchwork of small segments of geodesic paths headed toward a_{*} (geodesics tend to stick).
- So we want to show that 「, the set of points x on γ from which we can start a geodesic to a_{*} not meeting γ again, is a small set.

Shape of the typical geodesics

- An important point is to describe precisely the geodesic γ between two "generic" points x_{1}, x_{2}. More precisely, one must show that it is a patchwork of small segments of geodesic paths headed toward a_{*} (geodesics tend to stick).
- So we want to show that Γ, the set of points x on γ from which we can start a geodesic to a_{*} not meeting γ again, is a small set.

> Proposition
> There exists $\delta \in(0,1)$ such that a.s. for every $\varepsilon>0$, the set Γ can be covered with less than $\varepsilon^{-(1-\delta)}$ D-balls of radius ε. In particular $\operatorname{dim}_{\mathcal{H}}(\Gamma)<1$.

Segments outside the "bad" purple set have lengths that can be evaluated.

Idea of proof: Quickly separating geodesics

- A method to prove the main proposition is to approach points of Γ by points where geodesics perform a quick separation: Evaluate the probability that for 4 randomly chosen points $x_{0}, x_{1}, x_{2}, x_{3}$,
- The three geodesics from x_{3} to x_{0}, x_{1}, x_{2} are disjoint outside of the ball of radius ε around x_{3}
- γ passes through the latter ball.

Proposition (codimension estimate)
The probability of the latter event is bounded above by $C \varepsilon^{3+\chi}$ for some

Idea of proof: Quickly separating geodesics

- A method to prove the main proposition is to approach points of Γ by points where geodesics perform a quick separation: Evaluate the probability that for 4 randomly chosen points $x_{0}, x_{1}, x_{2}, x_{3}$,
- The three geodesics from x_{3} to x_{0}, x_{1}, x_{2} are disjoint outside of the ball of radius ε around x_{3}
- γ passes through the latter ball.

Proposition (codimension estimate)

The probability of the latter event is bounded above by $C \varepsilon^{3+\chi}$ for some $\chi>0$.

Brownian map and stable maps universality classes

For Boltzmann maps \mathbb{B}_{w}^{n} sampled accoding to "generic" sequences of weights, the Brownian map still prevails in the limit.

Theorem (Le Gall 2011)

If $\left(w_{k}, k \geq 1\right)$ is a weight sequence with finite support, then if M_{n} has law \mathbb{B}_{w}^{n}, there exists a constant b_{w} such that $\left(V\left(M_{n}\right), b_{w} n^{-1 / 4} d_{M_{n}}\right)$ converges in distribution to the Brownian map.

Brownian map and stable maps universality classes

For Boltzmann maps \mathbb{B}_{w}^{n} sampled accoding to "generic" sequences of weights, the Brownian map still prevails in the limit.

Theorem (Le Gall 2011)

If $\left(w_{k}, k \geq 1\right)$ is a weight sequence with finite support, then if M_{n} has law \mathbb{B}_{w}^{n}, there exists a constant b_{w} such that $\left(V\left(M_{n}\right), b_{w} n^{-1 / 4} d_{M_{n}}\right)$ converges in distribution to the Brownian map.

But under certain conditions called non-generic, implying in particular that $w_{k} \sim C \rho^{k} k^{-a}$ for some $a \in(3 / 2,5 / 2)$, the limit is different.

Theorem (Le Gall-Miermont 2009)

For non-generic weights, if M_{n} has law \mathbb{B}_{w}^{n}, the sequence $\left(V\left(M_{n}\right), n^{-1 /(2 a-1)} d_{M_{n}}\right)$ converges in distribution, at least along some extraction, to a random metric space $\left(S_{a}, d_{a}\right)$ with Hausdorff dimension a.s. equal to $2 a-1$, the stable map with index a.

Non-genericity in gaskets of loop models

- Decorate a quadrangulation with simple and mutually avoiding dual loops: weight $W_{g, h}^{(n)}(\mathbf{q})=g^{\# q u a d} h^{\mid \text {loops } \mid} n^{\# \text { loops }}$
- Emptying the interior of the loops, gives a Boltzmann random map

$$
w_{k}=g \delta_{k 2}+n h^{2 k} \sum_{|\partial \mathbf{q}|=2 k} W_{g, h}^{(n)}(\mathbf{q})
$$

Phase diagram at fixed $n \in(0,2]$ [Borot-Bouttier-Guitter 2011]

Some future directions and open questions

- Topology of stable maps (in progress):
- if $a \in[2,5 / 2)$ then $\left(S_{a}, d_{a}\right)$ is a random Sierpinsky carpet (holes have simple, mutually avoiding boundaries).
- if $a \in[2,5 / 2)$ then holes have self and mutual intersections.
- This phenomenon recalls the phases of Schramm-Loewner Evolutions and Conformal Loop Ensembles (Sheffield-Werner). This is no coincidence, as CLEs are the conjectured limits of $O(n)$ loop models on regular lattices.
- Is there a "canonical embedding" of the Brownian map in \mathbb{S}^{2} ?
- Is there a canonical embedding of stable maps into CLE's?

