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Plane maps
Definition

A plane map is an embedding of a connected, finite (multi)graph into

the 2-dimensional sphere, considered up to orientation-preserving
homeomorphisms of the sphere.

A rooted map: distinguish
one oriented edge.
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Plane maps
Definition
A plane map is an embedding of a connected, finite (multi)graph into

the 2-dimensional sphere, considered up to orientation-preserving
homeomorphisms of the sphere.

V(m) Vertices

E(m) Edges

F(m) Faces

dm(u, v) graph distance

A rooted map: distinguish
one oriented edge.
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Motivation

@ Maps are seen as discretized 2D Riemannian manifolds.

@ This comes from 2D quantum gravity, in which a basic object is
the partition function

/ [Dg] exp(—a Areag(M))
R(M)/Diff* (M)

M is a 2-dimensional orientable manifold,

R(M) is the space of Riemannian metrics on M,

Diff " (M) the set of orientation-preserving diffeomorphisms,

Dg is a “Lebesgue” measure on R(M) invariant under the action of
Difft(M). This, and the induced measure [Dg], are the problematic
objects.

vV vy VvYy
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How to deal with [Dg]?

One can replace
D —) 57’
/72(/\//) /Diff*(M) T e%(:M

where Tr(M) is the set of triangulations of M.

@ Then one tries to take a scaling limit of the right-hand side, in
which triangulations approximate a “smooth”, continuum surface.

@ Analog to path integrals, in which random walks can be used to
approximate Brownian motion.

@ The success of this approach comes from the rich literature on
enumerative theory of maps, after Tutte’s work or the literature on
matrix integrals.

@ However, metric aspects of maps could only be dealt with recently,
using bijective approaches.

@ Another approach: Liouville quantum gravity (Polyakov, David,
Duplantier-Sheffield...).
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How to choose a random map
All maps we consider are rooted.

@ pick a p-angulation with n vertices, uniformly at random (ex p =3
triangulation, p = 4 quadrangulation)
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How to choose a random map
All maps we consider are rooted.

@ pick a p-angulation with n vertices, uniformly at random (ex p =3
triangulation, p = 4 quadrangulation)

@ From now on we only consider bipartite plane maps (with faces of
even degree), mostly for technical simplicity.
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How to choose a random map
All maps we consider are rooted.

@ pick a p-angulation with n vertices, uniformly at random (ex p =3
triangulation, p = 4 quadrangulation)

@ From now on we only consider bipartite plane maps (with faces of
even degree), mostly for technical simplicity.

@ Boltzmann distribution: let w = (wx, k > 1) be a non-negative
non-zero sequence, wy < 1. Define a measure by

By(m) =[] Wdeg (n/2. M rooted, bipartite
feF(m
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How to choose a random map
All maps we consider are rooted.

@ pick a p-angulation with n vertices, uniformly at random (ex p =3
triangulation, p = 4 quadrangulation)

@ From now on we only consider bipartite plane maps (with faces of
even degree), mostly for technical simplicity.

@ Boltzmann distribution: let w = (wx, k > 1) be a non-negative
non-zero sequence, wy < 1. Define a measure by

By(m) =[] Wdeg (n/2. M rooted, bipartite
feF(m

@ Let
B () = BW(- | {m with n vertices}) ;

defining a probability measure. Uniform on 2p-angulations with n
vertices if wyx = dp.
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Simulation of a uniform random plane quadrangulation
with 30000 vertices, by J.-F. Marckert

@ Qp uniform random variable in the
set Q,, of rooted plane
quadrangulations with n faces
(law BJ2)

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM '06 6/20



Simulation of a uniform random plane quadrangulation
with 30000 vertices, by J.-F. Marckert

@ Qp uniform random variable in the
set Q,, of rooted plane
quadrangulations with n faces
(law BJ2)

@ The set V(Q)) of its vertices is
endowed with the graph distance
do

"

g
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Simulation of a uniform random plane quadrangulation
with 30000 vertices, by J.-F. Marckert

@ Qp uniform random variable in the
set Q,, of rooted plane
quadrangulations with n faces
(law BJ2)

@ The set V(Q)) of its vertices is
endowed with the graph distance
da,-

e Typically dg,(u, v) scales like n'/*
(Chassaing-Schaeffer (2004)).

g
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Convergence to the Brownian map

Theorem

There exists a random metric space (S, D*), called the Brownian map,
such that the following convergence in distribution holds

(V(Qn), (8n/9)~ 1/40'0) (S )

as n — oo, for the Gromov-Hausdorff topology.
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Convergence to the Brownian map

Theorem

There exists a random metric space (S, D*), called the Brownian map,
such that the following convergence in distribution holds

(V(Qn), (8n/9)~ 1/40'0) (S )

as n — oo, for the Gromov-Hausdorff topology.

@ This result has been proved independently by Le Gall (2011) and
Miermont (2011), via different approaches. Also universality
results in Le Gall (2011).

@ Before this work, convergence was only known up to extraction of
subsequences, but the uniqueness of the limiting law was open.
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Some of the previous results on random maps

@ Chassaing-Schaeffer (2004)
» identify n'/# as the proper scaling and
» compute limiting functionals for random quadrangulations.

@ Generalized by Marckert-M. (2007), M. (2008) to the larger class
of Boltzmann random maps.
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» compute limiting functionals for random quadrangulations.

@ Generalized by Marckert-M. (2007), M. (2008) to the larger class
of Boltzmann random maps.

@ Marckert-Mokkadem (2006) introduce the Brownian map.
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» identify n'/# as the proper scaling and
» compute limiting functionals for random quadrangulations.
@ Generalized by Marckert-M. (2007), M. (2008) to the larger class
of Boltzmann random maps.

@ Marckert-Mokkadem (2006) introduce the Brownian map.

@ Le Gall (2007)

» Gromov-Hausdorff tightness for rescaled 2p-angulations
» the limiting topology is the same as that of the Brownian map.
» all subsequential limits have Hausdorff dimension 4
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Some of the previous results on random maps

@ Chassaing-Schaeffer (2004)
» identify n'/# as the proper scaling and
» compute limiting functionals for random quadrangulations.
@ Generalized by Marckert-M. (2007), M. (2008) to the larger class
of Boltzmann random maps.
@ Marckert-Mokkadem (2006) introduce the Brownian map.
@ Le Gall (2007)

» Gromov-Hausdorff tightness for rescaled 2p-angulations
» the limiting topology is the same as that of the Brownian map.
» all subsequential limits have Hausdorff dimension 4

@ Le Gall-Paulin (2008), and later M. (2008) show that the limiting
topology is that of the 2-sphere.
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Some of the previous results on random maps

@ Chassaing-Schaeffer (2004)
» identify n'/# as the proper scaling and
» compute limiting functionals for random quadrangulations.
@ Generalized by Marckert-M. (2007), M. (2008) to the larger class
of Boltzmann random maps.
@ Marckert-Mokkadem (2006) introduce the Brownian map.
@ Le Gall (2007)

» Gromov-Hausdorff tightness for rescaled 2p-angulations
» the limiting topology is the same as that of the Brownian map.
» all subsequential limits have Hausdorff dimension 4

@ Le Gall-Paulin (2008), and later M. (2008) show that the limiting
topology is that of the 2-sphere.

@ Bouttier-Guitter (2008) identify the limiting joint law of distances
between three uniformly chosen vertices.
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The Cori-Vauquelin-Schaeffer bijection: coding maps
with trees

@ Let T, be the set of rooted plane trees with n edges,

@ T, be the set of labeled trees (t,1) where | : V(t) — Z satisfies
I(root) = 0 and

W(u)—1I(v)| <1, u, v neighbors .
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The Cori-Vauquelin-Schaeffer bijection: coding maps
with trees

@ Let T, be the set of rooted plane trees with n edges,

@ T, be the set of labeled trees (t,1) where | : V(t) — Z satisfies
I(root) = 0 and

(u) = 1(v)| <1, u, v neighbors.

Theorem (Cori-Vauquelin 1981, Schaeffer)

The construction to follow yields a bijection between T, x {0,1} and
Q;, the set of rooted, pointed plane quadrangulations with n faces.
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CVS bijection
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CVS bijection

minl —1
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CVS bijection
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CVS bijection

Note that the labels are geodesic distances in the map. Key formula:
dgq(vi, v) =1(v) —infl 4+ 1
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Scaling limits for plane trees: Aldous’ CRT

@ The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element T, of T,:

(V(Tn), (2n)""2dr,) = T,

for the Gromov-Hausdorff distance.
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Scaling limits for plane trees: Aldous’ CRT

@ The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element T, of T,:

(V(Tn),(2n)""/2dr,) = T,

for the Gromov-Hausdorff distance.

@ Note that a tree with n edges can be encoded by a walk (Harris
encoding): let u;,0 < i < 2n be the i + 1-th explored vertex in
contour order (started at the root). Let C; the height of u;.
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Scaling limits for plane trees: Aldous’ CRT

@ The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element T, of T,:

(V(Tn),(2n)""/2dr,) = T,

for the Gromov-Hausdorff distance.

@ Note that a tree with n edges can be encoded by a walk (Harris
encoding): let u;,0 < i < 2n be the i + 1-th explored vertex in
contour order (started at the root). Let C; the height of u;.

The Harris walk is a
random walk
conditioned to be
non-negative and to
be at 0 at time 2n.
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The Brownian CRT

@ Let T, be uniformin T,, and
C" be its contour process. As
n — oo, the process
((2n)—‘/201';n, ,0<t <)
converges In distribution to a
normalized Brownian
excursion (e, 0 <t <1).

>
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The Brownian CRT

@ Let T, be uniformin T,, and
C" be its contour process. As
n — oo, the process
((2n)—‘/201’5m ,0<t<1)
converges in éistribution toa
normalized Brownian
excursion (e, 0 <t < 1).

@ Define

de(s, 1) = es+et—2 S/\tgingSVICBU' )
This is a pseudo-distance on
[0, 1]. The continuum random
tree is the quotient space
Te =[0,1]/ ~e, Where
S~t < d(s,t)=0.1t
defines an R-tree.
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Brownian labels on the Brownian tree

@ Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.
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Brownian labels on the Brownian tree

@ Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.

@ Informally, we let Z be a
centered Gaussian process
run on 7, with covariance
function

Cov (Za, Zp) = dr(root,a A b),

a A b the most recent common
ancestor of a, b.
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Brownian labels on the Brownian tree

@ Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.

@ Informally, we let Z be a
centered Gaussian process
run on 7, with covariance
function

Cov (Za, Zp) = dr(root,a A b),

Toot

a A b the most recent common
ancestor of a, b.
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Convergence of labeled trees
@ Let (Tp,¢pn) be uniformin T. Then

1 9\ /4 (d)
(ETn, (8_n> fn) n;)o (%,Z)a

e.g. in the sense of convergence of contour encoding functions.
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Convergence of labeled trees
@ Let (Tp,¢pn) be uniformin T. Then

1 9\ "4 (d)
(E Th, (8_n> fn) njo (Te, Z2),
e.g. in the sense of convergence of contour encoding functions.

@ We want to apply to (7, Z) a similar construction as the CVS
bijection.
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Convergence of labeled trees
@ Let (Tp,¢pn) be uniformin T. Then

1 9\"* (d)
(an, <8I7> fn) njo (Te, Z2),
e.g. in the sense of convergence of contour encoding functions.
@ We want to apply to (7, Z) a similar construction as the CVS
bijection.
@ The Brownian map is a quotient of 7, by the equivalence relation

generated by
{(a,b): Za =2 = EniQZ},
a,

where [a, b] is the interval from ato b around 7.
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Convergence of labeled trees
@ Let (Tp,¢pn) be uniformin T. Then

1 9\"* (d)
(\/ZT’ITn’ <8I7> E,,) njo (Te, Z2),
e.g. in the sense of convergence of contour encoding functions.
@ We want to apply to (7, Z) a similar construction as the CVS
bijection.
@ The Brownian map is a quotient of 7, by the equivalence relation

generated by
{(a,b): Za =2 = EniQZ},
a,

where [a, b] is the interval from ato b around 7.
@ The resulting quotient set is endowed with a distance D such that
D(a,a")=Z;—infZ
if a € T, and a* = argmin(Z). Other distances D(a, b), a,b # a.?
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Shape of the typical geodesics

@ An important point is to describe precisely the geodesic v
between two “generic” points xq, xo. More precisely, one must
show that it is a patchwork of small segments of geodesic paths
headed toward a. (geodesics tend to stick).
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Shape of the typical geodesics

@ An important point is to describe precisely the geodesic
between two “generic” points x4, Xo. More precisely, one must
show that it is a patchwork of small segments of geodesic paths
headed toward a. (geodesics tend to stick).

@ So we want to show that I', the set of points x on ~ from which we
can start a geodesic to a, not meeting v again, is a small set.

T2

N Proposition
1 ) There exists § € (0,1) such that
yel a.s. for every ¢ > 0, the set T can
be covered with less than ¢=(1-9)
D-balls of radius e. In particular
d1mH(F) <1.

v

Segments outside the “bad” purple
set have lengths that can be
evaluated.
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Idea of proof: Quickly separating geodesics

- .. @ A method to prove the main

2 proposition is to approach
.................... points of I by points where
geodesics perform a quick
separation: Evaluate the
probability that for 4 randomly
chosen points xg, X1, X2, X3,

» The three geodesics from x3
to xp, X1, X2 are disjoint
outside of the ball of radius ¢
around x3

» ~ passes through the latter
ball.
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Idea of proof: Quickly separating geodesics

- .. @ A method to prove the main

? proposition is to approach
____________________ points of I by points where
geodesics perform a quick
separation: Evaluate the
probability that for 4 randomly
chosen points xg, X1, X2, X3,

» The three geodesics from x3
to xp, X1, X2 are disjoint
outside of the ball of radius ¢
around x3

» ~ passes through the latter
ball.

Proposition (codimension estimate)

The probability of the latter event is bounded above by C<3tX for some
x > 0.
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Brownian map and stable maps universality classes

For Boltzmann maps B;,, sampled accoding to “generic” sequences of
weights, the Brownian map still prevails in the limit.

Theorem (Le Gall 2011)

If (wg, k > 1) is a weight sequence with finite support, then if M,, has
law B, there exists a constant by, such that (V(M,), bun~"/4dy,)
converges in distribution to the Brownian map.
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Brownian map and stable maps universality classes

For Boltzmann maps B;,, sampled accoding to “generic” sequences of
weights, the Brownian map still prevails in the limit.

Theorem (Le Gall 2011)

If (wg, k > 1) is a weight sequence with finite support, then if M,, has
law B, there exists a constant by, such that (V(M,), bun~"/4dy,)
converges in distribution to the Brownian map.

But under certain conditions called non-generic, implying in particular
that wy ~ Cp*k—2 for some a € (3/2,5/2), the limit is different.

Theorem (Le Gall-Miermont 2009)

For non-generic weights, if M, has law B}, the sequence

(V(Mp), n=1/(2a=Ndy, ) converges in distribution, at least along some
extraction, to a random metric space (Sa, da) with Hausdorff dimension
a.s. equal to 2a — 1, the stable map with index a.

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM '06 17/20



Non-genericity in gaskets of loop models
O

g h n

3pi2p3 wiwiw
g 1waw3

@ Decorate a quadrangulation with simple and mutually avoiding
dual loops: weight W( 1 (q) = g*9uad plloops| pztloops
@ Emptying the interior of the loops, gives a Boltzmann random map

Wi = ok + nhPX Y~ Wé,”,i(q) -
|oq|=2k
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Phase diagram at fixed n € (0, 2]
[Borot-Bouttier-Guitter 2011]

h
A

non-generic critical .

b= m"tarccos(n/2)

dense  Stable map a=2—-05

dilute Stable map a =2+b

sub-critical generic critical (Brownian map)

1/12
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Some future directions and open questions

@ Topology of stable maps (in progress):

» if a € [2,5/2) then (S,, d,) is a random Sierpinsky carpet (holes
have simple, mutually avoiding boundaries).
» if a € [2,5/2) then holes have self and mutual intersections.

@ This phenomenon recalls the phases of Schramm-Loewner
Evolutions and Conformal Loop Ensembles (Sheffield-Werner).
This is no coincidence, as CLEs are the conjectured limits of O(n)
loop models on regular lattices.

@ Is there a “canonical embedding” of the Brownian map in S2?
@ |s there a canonical embedding of stable maps into CLE’s?
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