
Random maps and continuum random
2-dimensional geometries

Grégory Miermont

Université de Paris-Sud 11, Orsay & CNRS/PIMS

6th European Congress of Mathematics
Kraków, Poland

Wednesday, July 4th 2012

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 1 / 20



Plane maps
Definition
A plane map is an embedding of a connected, finite (multi)graph into
the 2-dimensional sphere, considered up to orientation-preserving
homeomorphisms of the sphere.

A rooted map: distinguish
one oriented edge.

V (m) Vertices
E(m) Edges
F (m) Faces
dm(u, v) graph distance
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Motivation

Maps are seen as discretized 2D Riemannian manifolds.
This comes from 2D quantum gravity, in which a basic object is
the partition function∫

R(M)/Diff+(M)
[Dg] exp(−αAreag(M))

I M is a 2-dimensional orientable manifold,
I R(M) is the space of Riemannian metrics on M,
I Diff+(M) the set of orientation-preserving diffeomorphisms,
I Dg is a “Lebesgue” measure on R(M) invariant under the action of

Diff+(M). This, and the induced measure [Dg], are the problematic
objects.
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How to deal with [Dg]?
One can replace ∫

R(M)/Diff+(M)
[Dg] −→

∑
T∈Tr(M)

δT

where Tr(M) is the set of triangulations of M.

Then one tries to take a scaling limit of the right-hand side, in
which triangulations approximate a “smooth”, continuum surface.
Analog to path integrals, in which random walks can be used to
approximate Brownian motion.
The success of this approach comes from the rich literature on
enumerative theory of maps, after Tutte’s work or the literature on
matrix integrals.
However, metric aspects of maps could only be dealt with recently,
using bijective approaches.
Another approach: Liouville quantum gravity (Polyakov, David,
Duplantier-Sheffield...).
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How to choose a random map
All maps we consider are rooted.

pick a p-angulation with n vertices, uniformly at random (ex p = 3
triangulation, p = 4 quadrangulation)
From now on we only consider bipartite plane maps (with faces of
even degree), mostly for technical simplicity.
Boltzmann distribution: let w = (wk , k ≥ 1) be a non-negative
non-zero sequence, w1 < 1. Define a measure by

Bw (m) =
∏

f∈F (m)

wdeg(f )/2 , m rooted, bipartite

Let
Bn

w (·) = Bw

(
·
∣∣ {m with n vertices}

)
,

defining a probability measure. Uniform on 2p-angulations with n
vertices if wk = δkp.
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Simulation of a uniform random plane quadrangulation
with 30000 vertices, by J.-F. Marckert

Qn uniform random variable in the
set Qn, of rooted plane
quadrangulations with n faces
(law Bn+2

δ2
)

The set V (Qn) of its vertices is
endowed with the graph distance
dQn .
Typically dQn (u, v) scales like n1/4

(Chassaing-Schaeffer (2004)).
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Convergence to the Brownian map

Theorem
There exists a random metric space (S,D∗), called the Brownian map,
such that the following convergence in distribution holds

(V (Qn), (8n/9)−1/4dQn )
(d)−→

n→∞
(S,D∗)

as n→∞, for the Gromov-Hausdorff topology.

This result has been proved independently by Le Gall (2011) and
Miermont (2011), via different approaches. Also universality
results in Le Gall (2011).
Before this work, convergence was only known up to extraction of
subsequences, but the uniqueness of the limiting law was open.
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Some of the previous results on random maps

Chassaing-Schaeffer (2004)
I identify n1/4 as the proper scaling and
I compute limiting functionals for random quadrangulations.

Generalized by Marckert-M. (2007), M. (2008) to the larger class
of Boltzmann random maps.
Marckert-Mokkadem (2006) introduce the Brownian map.
Le Gall (2007)

I Gromov-Hausdorff tightness for rescaled 2p-angulations
I the limiting topology is the same as that of the Brownian map.
I all subsequential limits have Hausdorff dimension 4

Le Gall-Paulin (2008), and later M. (2008) show that the limiting
topology is that of the 2-sphere.
Bouttier-Guitter (2008) identify the limiting joint law of distances
between three uniformly chosen vertices.
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The Cori-Vauquelin-Schaeffer bijection: coding maps
with trees

Let Tn be the set of rooted plane trees with n edges,
Tn be the set of labeled trees (t, l) where l : V (t)→ Z satisfies
l(root) = 0 and

|l(u)− l(v)| ≤ 1 , u, v neighbors .

Theorem (Cori-Vauquelin 1981, Schaeffer)
The construction to follow yields a bijection between Tn × {0,1} and
Q∗n, the set of rooted, pointed plane quadrangulations with n faces.

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 9 / 20



The Cori-Vauquelin-Schaeffer bijection: coding maps
with trees

Let Tn be the set of rooted plane trees with n edges,
Tn be the set of labeled trees (t, l) where l : V (t)→ Z satisfies
l(root) = 0 and

|l(u)− l(v)| ≤ 1 , u, v neighbors .

Theorem (Cori-Vauquelin 1981, Schaeffer)
The construction to follow yields a bijection between Tn × {0,1} and
Q∗n, the set of rooted, pointed plane quadrangulations with n faces.

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 9 / 20



CVS bijection
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CVS bijection

1

2

2

1

3

3

2

2

0

? ?

Note that the labels are geodesic distances in the map. Key formula:

dq(v∗, v) = l(v)− inf l + 1
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Scaling limits for plane trees: Aldous’ CRT
The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element Tn of Tn:

(V (Tn), (2n)−1/2dTn )→ T ,

for the Gromov-Hausdorff distance.
Note that a tree with n edges can be encoded by a walk (Harris
encoding): let ui ,0 ≤ i ≤ 2n be the i + 1-th explored vertex in
contour order (started at the root). Let Ci the height of ui .

The Harris walk is a
random walk
conditioned to be
non-negative and to
be at 0 at time 2n.

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 11 / 20



Scaling limits for plane trees: Aldous’ CRT
The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element Tn of Tn:

(V (Tn), (2n)−1/2dTn )→ T ,

for the Gromov-Hausdorff distance.
Note that a tree with n edges can be encoded by a walk (Harris
encoding): let ui ,0 ≤ i ≤ 2n be the i + 1-th explored vertex in
contour order (started at the root). Let Ci the height of ui .

The Harris walk is a
random walk
conditioned to be
non-negative and to
be at 0 at time 2n.

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 11 / 20



Scaling limits for plane trees: Aldous’ CRT
The Brownian tree arises as the scaling limit of many discrete
random tree models, e.g. uniform random element Tn of Tn:

(V (Tn), (2n)−1/2dTn )→ T ,

for the Gromov-Hausdorff distance.
Note that a tree with n edges can be encoded by a walk (Harris
encoding): let ui ,0 ≤ i ≤ 2n be the i + 1-th explored vertex in
contour order (started at the root). Let Ci the height of ui .

The Harris walk is a
random walk
conditioned to be
non-negative and to
be at 0 at time 2n.

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 11 / 20



The Brownian CRT
Let Tn be uniform in Tn, and
Cn be its contour process. As
n→∞, the process
((2n)−1/2Cn

[2nt],0 ≤ t ≤ 1)
converges in distribution to a
normalized Brownian
excursion (et ,0 ≤ t ≤ 1).
Define

de(s, t) = es+et−2 inf
s∧t≤u≤s∨t

eu .

This is a pseudo-distance on
[0,1]. The continuum random
tree is the quotient space
Te = [0,1]/ ∼e, where
s ∼ t ⇐⇒ de(s, t) = 0. It
defines an R-tree.
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Brownian labels on the Brownian tree

Once the tree is build, one can
consider a white noise
supported by the tree, or,
equivalently, branching
Brownian paths.
Informally, we let Z be a
centered Gaussian process
run on T , with covariance
function

Cov (Za,Zb) = dT (root,a ∧ b) ,

a ∧ b the most recent common
ancestor of a,b.
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Convergence of labeled trees
Let (Tn, `n) be uniform in Tn. Then(

1√
2n

Tn,

(
9

8n

)1/4

`n

)
(d)−→

n→∞
(Te,Z ) ,

e.g. in the sense of convergence of contour encoding functions.
We want to apply to (Te,Z ) a similar construction as the CVS
bijection.
The Brownian map is a quotient of Te by the equivalence relation
generated by

{(a,b) : Za = Zb = min
[a,b]

Z} ,

where [a,b] is the interval from a to b around Te.
The resulting quotient set is endowed with a distance D such that

D(a,a∗) = Za − inf Z

if a ∈ Te and a∗ = argmin(Z ). Other distances D(a,b),a,b 6= a∗?
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Shape of the typical geodesics
An important point is to describe precisely the geodesic γ
between two “generic” points x1, x2. More precisely, one must
show that it is a patchwork of small segments of geodesic paths
headed toward a∗ (geodesics tend to stick).
So we want to show that Γ, the set of points x on γ from which we
can start a geodesic to a∗ not meeting γ again, is a small set.

Proposition
There exists δ ∈ (0,1) such that
a.s. for every ε > 0, the set Γ can
be covered with less than ε−(1−δ)

D-balls of radius ε. In particular
dimH(Γ) < 1.

Segments outside the “bad” purple
set have lengths that can be
evaluated.
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Idea of proof: Quickly separating geodesics

γ

ε

x1 x2

x0

x3

A method to prove the main
proposition is to approach
points of Γ by points where
geodesics perform a quick
separation: Evaluate the
probability that for 4 randomly
chosen points x0, x1, x2, x3,

I The three geodesics from x3
to x0, x1, x2 are disjoint
outside of the ball of radius ε
around x3

I γ passes through the latter
ball.

Proposition (codimension estimate)

The probability of the latter event is bounded above by Cε3+χ for some
χ > 0.
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Brownian map and stable maps universality classes
For Boltzmann maps Bn

w sampled accoding to “generic” sequences of
weights, the Brownian map still prevails in the limit.

Theorem (Le Gall 2011)
If (wk , k ≥ 1) is a weight sequence with finite support, then if Mn has
law Bn

w , there exists a constant bw such that (V (Mn),bwn−1/4dMn )
converges in distribution to the Brownian map.

But under certain conditions called non-generic, implying in particular
that wk ∼ Cρkk−a for some a ∈ (3/2,5/2), the limit is different.

Theorem (Le Gall-Miermont 2009)
For non-generic weights, if Mn has law Bn

w , the sequence
(V (Mn),n−1/(2a−1)dMn ) converges in distribution, at least along some
extraction, to a random metric space (Sa,da) with Hausdorff dimension
a.s. equal to 2a− 1, the stable map with index a.
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Non-genericity in gaskets of loop models

hg n

g3h12n3 w1w
2
2w3

Decorate a quadrangulation with simple and mutually avoiding
dual loops: weight W (n)

g,h (q) = g#quadh|loops|n#loops

Emptying the interior of the loops, gives a Boltzmann random map

wk = gδk2 + nh2k
∑
|∂q|=2k

W (n)
g,h (q) .

Grégory Miermont (Université Paris-Sud) Scaling limit of quadrangulations ECM ’06 18 / 20



Phase diagram at fixed n ∈ (0,2]
[Borot-Bouttier-Guitter 2011]

g

h

non-generic critical

generic critical (Brownian map)

dense

dilute

sub-critical

1/12

Stable map a = 2− b

Stable map a = 2 + b

b = π−1 arccos(n/2)
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Some future directions and open questions

Topology of stable maps (in progress):
I if a ∈ [2,5/2) then (Sa,da) is a random Sierpinsky carpet (holes

have simple, mutually avoiding boundaries).
I if a ∈ [2,5/2) then holes have self and mutual intersections.

This phenomenon recalls the phases of Schramm-Loewner
Evolutions and Conformal Loop Ensembles (Sheffield-Werner).
This is no coincidence, as CLEs are the conjectured limits of O(n)
loop models on regular lattices.
Is there a “canonical embedding” of the Brownian map in S2?
Is there a canonical embedding of stable maps into CLE’s?
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