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Commuting ordinary differential operators

@ Introduction: commuting ordinary differential operators of rank one
@ Commuting higher rank ordinary differential operators
@ Evolution equations of Krichever—Novikov type

@ Open problems
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Introduction

m—2
Ln_6”+Zu, )0, Lm=07+ > vi(x)d.
i=0
There is a classmcatlon of commuting operators (.M. Krichever)
Examples
1. u;, v; are constant
2. Lnp = Fi(L), Lm = Fo(L), Fy, F> are polynomials
Wallenberg, 1903:
1.n=1, Lg = F(L1)
2.n=2,m=238.
3 3

Ly =22 +u(x), Ly=8+ SU(X)x + Zu’(x),

where u(x) satisfies the equation
(U")? +2u° + syu+ sp = 0.
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Introduction

Theorem (Schur, 1905)

IfLilo = oLy and LiL3 = L3L4 (L1 75 COﬂSt), then

Lolg = Lalo.

Theorem (Burchnall, Chaundy, 1923)

If LiLy, = L,L4, then there exist a non-trivial polynomial R(\, ) of two
commuting variables such that R(L4, Ly) = 0.
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Introduction

Examples

@ For Wallenberg’s operators
2 3 3 3 /
Ly =0y +u(x), Ly=05+ EU(X)GX + U (x),

(U2 +2u® + syu+ s =0,
the polynomial R has the form

R(z,w) = w? — (z%—%z—%).

0L =02-% LL,=3-30+3

L3 =15, RO\ p)=A°— 2
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Introduction

Spectral curve
M= {(\p) € C?: R(\, ) = 0},

If L1y = \p and Loty = b, then (A, p) € T, = ¥(x, P), P = (z, w).

rank of Ly and Ly is

I =dim{t : Lo = M\, Loy = i)}
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Commuting differential operators of rank one

Baker—Akhiezer function ¢(x, P),P €T
Spectral data
{raqv k_1771’ cee 77g}

I is a Riemann surface,
k—'is a local parameter near g € T,

Y1,...7g €T.
The Baker—Akhiezer function has the properties:

owzekx(1+L,f)+...)

@ on I'\g the BA-function + is meromorphic with the poles in
RAEEER 7’Yg
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Commuting differential operators of rank one

Let f(P) be a meromorphic function on I with a unique pole in q of
order n

c_
f:k”+c,,,1k”‘1+---+co+71+...

O+ Up_1 ()0 + -+ U (X)) = Fip + € (o </1<>> .
From the uniqueness of BA-function it follows that
Liyp(x, P) = f(p)y(x, P).
Let g(P) be a meromorphic function with unique pole in g of order m
Latp(x, P) = g(P)y(x, P).

We have
(LiLo — LoLy)(x, P) = 0 = LiLo = LoLy.
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Commuting differential operators of rank one

Example
r=CP', g=0c0, k=2

Baker—Akhiezer function ) = e*¢

1

f=2"+cp 12" "+ + 0,

YW + Co1 05 + -+ Cot = fup.
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Commuting differential operators of rank one

Example
r=C/{2wZ +2J'Z}, q=0,
b= e X o(z+x+7)
o(X +7)o(z+7)’

Lotp = (02 — 2p(X + 7)) = p(2)¢,
Ly = (33 —3p(x +7)0x — gp’(x + 7)) Y = %@’(Z)w,
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Commuting differential operators of rank one

Under the degeneration g», g3 — 0 we get the caspidal spectral curve.
Under this degeneration the functions ¢(z), {(z), p(z) become

We get commuting differential operators with rational coefficients

~ _ Z+ X+
vix,z)=e (x+)(z+7)
Aoa > 2 A_l,\
L2¢_ (ax (X+’y)2) Q;[) - Zzwa

~on 3 3 a 1 .
[p=(8° - ——— 2 \p=——
-1z
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Commuting differential operators of rank one

Example
r=CP'/{a~-a}, =00, ga=1, k=2

—a

e (152).
b(x,a) = P(x, —a)

_ (»® - &%)sinh(ax)
00 = acosh(ax) + ysinh(x)’
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Commuting differential operators of rank one

The functions f(z) = 22, g(z) = z° — a2z are rational functions on I
with the poles of order 2 and 3 at q. Thus we have

L(f)yp = (0% + u(x))yp = 2%,

L) = (08+ (Su00 - ) o+ S0 ) v = (22 - #2)0.

(x) = 2a%(a? — +?)
~ (acosh(ax) + vy sinh(ax))2’
The Burchnall-Chaundy polynomial of Ly, Ly is

R\, 1) = N — u(p— &)>.
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Higher rank commuting differential operators

Rank / > 1
Spectral data (Krichever)

{F,Q»k_1;’)’1a---a’Y/g»Oéh---aalg}

aj = (aqj,...,qj_1) — vector
(v, @) — Turin parameters define stable (in the sense of Mumford)
vector bundle of rank / degree Ig on I with holomorphic sections

Mooyl
-1
m(vi) =Y amj(m)-
=
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Higher rank commuting differential operators

Vector Baker—Akhiezer function

Q]b(X, P) = (¢0(X7 P)7 cee ,¢l—1(X7 P))

1. 9(x, P) = (32e20 &s(X)k %) Wo(x, P),
& =(1,0,...,0), L, = Av,,

0 1 o ... 0 0
0 0 1 0 0
0 0 o ... 0 1
K+ u(x) ui(x) u(x) ... u—_1(x) O
2. on T — {q} + is meromorphic with the simple poles in 74, ..., vjq

3. Resy;))j = ajRes,1_q.
If f(P) is meromorphic function with the pole in g of order n, then there
exist L(f) such that

L(f)y(x, P) = f(P)(x, P), ordL(f) = In.
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Higher rank commuting differential operators

Method of Turin parameters deformation

dl dl—1
ij = X/-1 ij + -+ Xo¥;

Xxs — meromorphic on I', xs has /g simple poles P;(x),..., Pg(x). In
the neighbourhood of g the functions xs have the form

Xo(X, P) = k + go(x) + O(k™"),

xj(X, P) = gi(x) + O(k™"), j<I-1,
xi-1(x, P) = O(k™M).
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Higher rank commuting differential operators

At the point P;(x)

Theorem (Krichever)

Parameters ~;(x), cj(Xx) = CCI”(:(()X), and dj(x),0<j</-21<i<lg
satisfy the equation

Gi—1(x) = —7i(x),
dio(X) = jo(X)evj1—2(X) + cjo(X)d;—1(X) — ajp(x),
dj(x) = aj(xX)ai—2(x) — @jj1(x) + j(x)dij—1(x) — aj(x),j > 1.
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Higher rank commuting differential operators

Krichever, Novikov: g =1, | =2T : p? = P3(\) = 4X3 + go\ + g3
Lin = (92+u)2+2¢x(p(72)—9(71))Ox+(Ccx(9(12)—9(11)))x—9(12) —9(11),

Y1(X) = 70 + ¢(x), 7y2(x) =70 — ¢(x),
1 1 2 XXX
U=~ gt o P20 )0 G+ E(Pel0+0.00-0)-0%(14,72)).
S(71,72) = C(v2 — 1) + (1) — C(2).

Operator Ly can be found from the equation [2,, = P3(Ly).
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Higher rank commuting differential operators

Let Ay =C(p,q: [p,q] = 1) be the Weyl algebra.
Theorem (Dixmier)
Two elements of A4

X = (p° + q* + h)* + 2p,

3
Y=+ + P+ (00 + P+ h) + (0 + @+ h)p), heC

commute and satisfy the equation Y?> = X3 — h.

If p=x, q=—0x ([x,—0x] = 1), then we get operators of rank two
Lp = (82 + x® 4+ h)? + 2x,
. 3 3
ip= (8§+x3+h) ¥

5 (x<8§+x3+h> + (a§+x3+h>x).

Operator Lp coincides with Ly for some ¢(x). Then, a natural
question is how to obtain Lp from Lxy (Gelfand’s problem).
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Higher rank commuting differential operators

Theorem (Grinevich)
Operators Ly and Lyn have rational coefficients if and only if

© gt
o0 = /q(x) VPs()

where q(t) is a rational function.
Ifvo = 0, and g(x) = x, we have the Dixmier operators.

Theorem (Grinevich, Novikov)
Operator Lky is formally self-adjoint if and only if p(v1) = p(72).

Mokhov: g=1, /=3
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Higher rank commuting differential operators

Rank / = 2, g > 1: self-adjoint case

M- W2:Fg(z):229+1 +C2g22g+"'+007 g=o0
Latp = 20, Lagioth = wip, (Lagi2)? = Fg(La),
o: T =T, 0(z,w)=(z,—w).
We have
V'(x, P) = x1(x, P)Y'(x, P) + xo(x, P)y(x,P), P=(z,w) €T,

where ¢ = (¢1,1») is a Baker—Akhiezer function.
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Higher rank commuting differential operators

The operator Ly is self-adjoint if and only if

x1(X, P) = x1(x, o(P)).

At g = 1 the Theorem was proved by Grinevich and Novikov.
Let us assume that the operator L4 is self-adjoint

Ly = (9% + V(x))? + W(x),

then the functions xg, x1 have simple poles at some points

<’y,-(X),:|:1/Fg(’y,-(X))> el 1<i<ag.
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Higher rank commuting differential operators

Theorem (M.)
If operator Ly is self-adjoint, then
_ 1g + ﬂ -V = Q/
XO - 2 Q Q 9 X1 - Q?
where
Q= (z—71(x))... (2 = 74(x))-
Function Q satisfies the equation

4Fy(2) = 4(z - W)@? - 4V(Q)? +(Q")? - 2@ Q¥

+2Q2V'Q +4VQ" + QW)
where @, Q", Q¥) mean 9,Q, 92Q, dXQ.
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Higher rank commuting differential operators

Corollary (M.)
The function Q satisfies the linear equation

£5Q = (ag +2(V,8%) +2(z— W — V", ax>) Q=0,
where (A, B) = AB + BA. Potentials V, W have the form

v <(Q”)2 —2Q'Q¥ — 4Fg(z)> ‘
- 4(0/)2 2=

W=—-2(y1 +--- +7g) — Cog-
The functions v1(x), . . ., vg(x) satisfy the equations

(@)?-2QQ0 —4Fy(z) | (Q)?-2QQ0) —4Fy(2)

4(Q)2 = 4(Q)2 | 2= -

v
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Higher rank commuting differential operators

Theorem (M.)
The operator

Ly = (82 + 03x® + a2x® + a1X + ap)? + g(g + 1)asx,  az#0

commutes with a differential operator Lig 4o Of order4g + 2. The

operators LZ, Lig o are operators of rank two. For generic values of
parameters (ag, a4, az, ag) the spectral curve is a nonsingular
hyperelliptic curve of genus g.

lfg=1,a1 =a2=0, ag =1, then the operators LZ, Lig+2 coincide
with the Dixmier operators
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Higher rank commuting differential operators

At g =1 we have
_ —16FR () + W2 2w W' - W
- 4wl2 K '7— 2 )

Ly = (82 + V(x))? + W(x).

4

Andrey Mironov (Sobolev Inst. of Math.) 6ECM, Krakow 26 /35



Higher rank commuting differential operators

Let L, be a finite-gap Schrdédinger operator
Loy = (=0F + u(x))y = z¢.
M W2 = Fg(Z) = 22g+1 +ng22g+' -++Cp, q =00, L2L29+1 = L29+1 Lg.
The BA function ¢ = ¢(x, P), P = (z,w) €T has g zeros
(5(x), w(vi(x))) € T

Q= (z—7(x))...(z—4(x)) satisfies the equations

4Fy(z) =4z - u)@® - (Q)? + QQ’,

£3Q = (aﬁ v2(z—u, ax>) Q=0,

U=—2(7 + -+ ) — Cog.
Functions ~1, ..., g satisfy Dubrovin’s equations
/ Hk;ﬁj(’Yk - ’Yj)
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Evolution equations

[L4, 0, — An] =0,
Ly = (02 + V(x, 1)) + W(x, tn),
—AR= A, =02

Az =83 + gV(X, 1)y + gv’(x, 1),
- %(evv’ LEW V), W = %(—svw’ —w",

Drinfeld and Sokolov found solutions of rank 1

v,

[La, Log41] = 0.
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Evolution equations

Solutions of rank two

[L4,01, — An] =0, [L4,Lags2] =0

Theorem (Davletshina, M.)

Qt1 _ %(_3\/01 _ QW)7

Qtz _ %(—4QW, +2V/Q// T Ql(8Z—5V2 —|—2W— V//) _ 2VQW),

These equations give symmetries of
4F,(z) = 4QP(z—W)—-4VQ2+Q"?-2Q Q" +2Q(2Q V' +4vQ" +Q%).
At g = 1, n =1 we have the Krichever—Novikov equation

48F(y) — W2 2w'w - W
8W/ 7’)/_ 2

111

W, =
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Open problems

Krichever—Novikov operators up to the conjugations are self-adjoint
operators.

Theorem (Latham, Previato)
Ly = (9§ + V(x))? + W(x), g =1
Ly — 29 = Ao, Le —wo = AqT, T =02 — x19x — Xo-

We have

L= TAo = T(Ls —20)T~',  Lin=TAs = T(Le — wo)T "

To prove an analog of the Theorem for g > 1.
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Open problems

Kadomtsev—Petviashvili equation

3 3
7Uyy 8)((Ut + UUX Uxxx)

is equivalent to
[0y — M, 0 — Al =0,

where
M= 92— U(x,y,t), A:aié—guax+8(x,y,t),
3 3 3 U 3
S =—7U - 7Ux sy:—ut—zuxﬁ—fx—iuux

Krichever found rank one solutions of KP
U=2021og0(Vix + Voy + Vat + V4, Q).

Shiota proved the Novikov conjecture.
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Open problems

Rank two, g = 1 solutions of KP were found by Krichever and Novikov
Lin = (0% — U)? + 10x + Oxfy + T,
—2W"?2 4+ 2(co + W +22(y))
(2 + W +22(y))? ’
18R () + W2 —2WW" - W
4w/2 9 FY - 2 Y
W = W(x, t) satisfies the Krichever—Novikov equation
48F(y) — W2 y2W' W
8W, b

U=-V -

111

W; =
z(y) satisfies the following equation
(z)? = 4F(2).

To find rank two solutions of KP (g > 1).
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Open problems

The group of automorphisms of the first Weyl algebra Aut(A+) acts on
the moduli spaces of operators with polynomial coefficients. For
example, with the help of the automorphism

501(X):ax+/68X7 901(8X):7X+58X7 < 3 ?) GSLZ
one can get from LZ, Lig+2 the operators of rank 3

Ly = (8 +aax® + apx® + agx + ap)? + g(g + 1)aax,  ag #0.

Another example of automorphisms are
p2(X) = x+ P1(0x),  »2(0x) = 0x,

e3(X) =X, ¢3(dx) = Ox + Pa(x),
where P, P, are polynomials. Dixmier proved that Aut(A¢) is

generated by ;. It would be very interesting to understand how
Aut(A¢) acts on the spectral data.
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Open problems

The equation
y2 — x29+1 ngXzQ +---4+ 0

has nonconstant solutions X = LZ, Y = Lig+2 € Ay for some ¢;.

It is easy to see that the group Aut(A+) preserves the space of all such
solutions, i.e. if (X, Y) is a solution to the polynomial equation above,
with X, Y € Ay, then (¢(X), ¢(Y)) is also a solution for any

¢ € Aut(A1). Then, a natural question is to describe the orbits of
Aut(Ay) in the space of solutions under the action of Aut(A+).

Yu. Berest has proposed the following conjecture: If g > 1, then there
are only finitely many such orbits, i.e. the equation

f(X,Y) = Yo X' Y/ = 0 with generic a;j € C has at most finitely
many solutions in A up to the action of Aut(A).
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Open problems

The Dixmier conjecture:
End(A¢) = Aut(A1).

If one describe all orbits of Aut(A1) in the space of solutions for the
equation f(X, Y) = 0, then this gives a chance to compare End(A1)
and Aut(Ay). For example, if there is only one orbit, then

End(A1) = Aut(Ay). For this reason it is important to find all solutions
X, Y € Ay for one concrete equation and to study the action of Aut(Ay).
For example, one can take the simplest equation Y? = X3 + 1.
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