pmv@mat.ufmg.br

Paula Murgel Veloso Universidade Federal de Minas Gerais (UFMG) Instituto de Ciências Exatas (ICEx) Departamento de Matemática (DMAT) Avenida Antônio Carlos, 6627 - P.O. Box 702 30161-970, Belo Horizonte - MG, Brazil

Abstract

Let \mathbb{N} be the set of non-negative integers and $H = \{0 = n_1 < n_2 < \ldots\} \subseteq \mathbb{N}$ be a numerical (additive) semigroup of finite genus g., i.e., the complement $\mathbb{N} \setminus H$ has g elements called gaps, $\operatorname{Gaps}(H) = \{\ell_1, \ldots, \ell_g\}$. For any numerical semigroup H, we define the parameter $m := n_2 - 1$. Weierstrass semigroups on algebraic curves are examples of numerical semigroups. It is known that a numerical semigroup may not always be realized as Weierstrass semigroups from a purely algebraic point of view.

A semigroup $H = \{0 = n_1 < n_2 < \cdots\} \subseteq \mathbb{N}$ is said to be *sparse* (as defined by Munuera, Torres and Villanueva) if its set of gaps $\operatorname{Gaps}(H) = \{\ell_1, \ldots, \ell_g\}$ satisfies $\ell_i - \ell_{i-1} \leq 2$, for $i = 2, \ldots, g$ (equivalently, $n_{i+1} - n_i \geq 2$, $i = 1, \ldots, c - g$, where $c = \ell_g + 1$). Thus, each pair of gaps in a sparse semigroup differ by 1 or 2. We present a count of how many gaps are consecutive and how many differ by 2.

It is well known (Oliveira) that $\ell_g \leq 2g - 1$. The cases of even or odd ℓ_g have to be handled separately and the techniques are considerably different.

We present a partial classification of sparse semigroups having odd largest gap ℓ_g .

In case ℓ_g is even, we write $\ell_g = 2g - 2k$. Munuera, Torres and Villanueva presented an upper bound for the genus of such semigroups: **Theorem 1**Let H be a sparse semigroup of genus g with $\ell_g = 2g - 2k$. If $g \ge 4k - 1$, then $g \le 6k - n_1$.

We show that there are no sparse semigroups having genus g > 4k - 1 and even largest gap $\ell_g = 2g - 2k$, yielding a new upper bound for their genus.

AMS Classification: 20M14.