Anna Novikova

novikova.anna180gmail.com

Voronezh State University, Russia

Abstract

Let E be rearrangement invariant (r.i.) space on [0,1]. Rademacher

subspace R(E) consists of all sequence $x = (x_n)$ such that $\sum_{k=1}^{\infty} x_k r_k$ converges in E and $||x||_{R(E)} = ||\sum_{k=1}^{\infty} x_k r_k||_E$, $r_n(t) = sign \sin 2^n \pi t$. Fundamental function of r.i. space E is defined by $\phi_E(t) = ||\chi_{[0,t]}||_E$. Fundamental sequence of space E with symmetric basis $\{e_i\}_{i=1}^{\infty}$ is the following $\phi_E(n) = ||\sum_{i=1}^n e_i||$. Theorem 1. Let $E = \Lambda_{\psi}$ be Lorentz function space with $\phi_E = \psi$.

The following relation

$$C_1 n \phi_E(2^{-n}) \le \phi_{R(E)}(n) \le C_2 n \phi_E(2^{-n}), \ 0 < C_1 \le C_2 < \infty, \ (1)^{\mid -1 \mid}$$

implies the existence of $\alpha \in (0, 1/2)$ such that $\psi(t) \geq \frac{C}{\ln^{\alpha}(e/t)}, C > 0$, and follows from the existence of $\alpha \in (0, 1/2)$ such that $\psi(t) \ln^{\alpha}(e/t)$ is decreasing in some neighborhood of 0.

Theorem 2. Let $E = M_{t/\psi(t)}$ be Marcinkiewicz function space with $\phi_E = \psi$. The relation (1) implies that $\psi(t) \geq \frac{C}{\sqrt{\ln(e/t)}}, C > C$ 0, and follows from the fact that $\psi(t)\sqrt{\ln(e/t)}$ is decreasing in some neighborhood of 0.

Using the fact that $\Lambda_{\psi} \subseteq E \subseteq M_{t/\psi(t)}$ for any E with $\phi_E = \psi$, similar results can be obtained for arbitrary r.i. space E.

— AMS Classification: 46E30.