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Stochastic Processes

A stochastic process X = {Xt , t ≥ 0} is a family of random
variables

Xt : Ω→ R

defined on a probability space (Ω,F ,P)

X is called Gaussian if for all 0 ≤ t1 < t2 < · · · < tn the probability
law of (Xt1 , . . . ,Xtn ) on Rn is normal
The law of a Gaussian process is determined by the mean
function E(Xt ) and the covariance function

Cov(Xt ,Xs) = E((Xt − E(Xt ))(Xs − E(Xs)))
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Brownian Motion

The Brownian motion (or Wiener process) is a Gaussian process
W = {Wt , t ≥ 0} with zero mean and covariance

E(WsWt ) = min(s, t)

E(Wt −Ws)2 = |t − s|
W has independent increments
The formal derivative dWt

dt is used as input noise in dynamical
systems
The stochastic calculus developed by Itô in the 40’s permits to
formulate and solve stochastic differential equations
dXt = b(Xt )dt + σ(Xt )dWt
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Applications in hydrology, telecommunications, queueing and
mathematical finance require input noises without independent
increments and possessing:

Stationary and correlated increments
Irregular trajectories t → Xt (ω)
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Fractional Brownian Motion

The fractional Brownian motion (fBm) BH = {BH
t , t ≥ 0} is a zero mean

Gaussian process with covariance

E(BH
s BH

t ) = RH(s, t) =
1
2

(
s2H + t2H − |t − s|2H

)
H ∈ (0,1) is called the Hurst parameter

E(BH
t − BH

s )2 = |t − s|2H

For any γ < H, with probability one, the trajectories t → BH
t (ω) are

Hölder continuous of order γ:

|BH
t (ω)− BH

s (ω)| ≤ Gγ,T (ω)|t − s|γ , s, t ∈ [0,T ]

For H = 1
2 , B

1
2 is a Brownian motion
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Correlated increments
For H 6= 1

2 ,

ρH(n) = E(BH
1 (BH

n+1 − BH
n ))

=
1
2

(
(n + 1)2H + (n − 1)2H − 2n2H

)
∼ H(2H − 1)n2H−2,

as n→∞
1
H -variation (Rogers ’97)

Fix [0,T ]. Set ti = iT
n for 0 ≤ i ≤ n and define ∆BH

ti = BH
ti+1
− BH

ti .
Then,

n−1∑
i=0

|∆BH
ti |

1
H

L2(Ω)−→ cHT

Formally, |dBH
t |

1
H ∼ cHdt
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Stochastic calculus

Problem: Give a meaning to the formal derivative dBH

dt (fractal noise),
and define integrals with respect to dBH

t of the form∫ T

0
ϕtdBH

t

For H 6= 1
2 , BH is not a semimartingale and we cannot use Itô’s

stochastic calculus to define stochastic integrals
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Integration of deterministic functions
The integral of a step function ϕt =

∑m
j=1 aj1(sj ,sj+1](t) ∈ E , where

t ∈ [0,T ], is defined by∫ T

0
ϕtdBH

t =
m∑

j=1

aj(BH
sj+1
− BH

sj
)

Let H be the closure of E with respect to the scalar product〈
1[0,t],1[0,s]

〉
H = E(BH

t BH
s ),

Linear isometry:

H > L2(Ω,F ,P)

ϕ >

∫ T

0
ϕtdBH

t
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Spaces of integrable functions

If H = 1
2 , H = L2([0,T ]) and (Itô isometry )

E

(∫ T

0
ϕtdB

1
2
t

)2

=

∫ T

0
ϕ2

t dt
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If H > 1
2 , using that

E
(

dBH
t dBH

s

)
=
∂R2

H
∂s∂t

dsdt = H(2H − 1)|s − t |2H−2dsdt

we obtain

E

(∫ T

0
ϕtdBH

t

)2

= αH

∫ T

0

∫ T

0
ϕsϕt |s − t |2H−2dsdt ,

where αH = H(2H − 1)
The space H contains the set of functions ϕ such that∫ T

0

∫ T

0
|ϕs||ϕt ||s − t |2H−2dsdt <∞,

which includes L
1
H ([0,T [)

• H contains distributions! (Pipiras-Taqqu ’00)
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If H < 1
2 , H is a space of functions:

H = I
1
2−H
T− (L2([0,T ])),

where I
1
2−H
T− is the fractional integral operator of order 1

2 − H

For any γ > 1
2 − H,

Cγ([0,T ]) ⊂ H
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Integration of random processess

(I) Case H > 1
2

Fix f ∈ C2, then
∫ T

0 f ′(BH
t )dBH

t exists as a path-wise
Riemann-Stieltjes integral (Young ’36), and

f (BH
T ) = f (0) +

∫ T

0
f ′(BH

t )dBH
t

In fact, the trajectories t 7→ f ′(BH
t (ω)) and t 7→ BH

t (ω) are Hölder
continuous of order larger than 1

2
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(II) Case H = 1
2

Forward Riemann sums converge to the Itô integral:

n−1∑
i=0

f ′(B
1
2
ti )∆B

1
2
ti

P→
∫ T

0
f ′(B

1
2
t )δB

1
2
t

which satisfies the Itô formula

f (B
1
2
T ) = f (0) +

∫ T

0
f ′(B

1
2
t )δB

1
2
t +

1
2

∫ T

0
f ′′(B

1
2
t )dt

Symmetric Riemann sums converge to the Stratonovich integral∫ T

0
f ′(B

1
2
t ) ◦ dB

1
2
t = f (B

1
2
T )− f (0)
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(III) Case H < 1
2

Forward Riemann sums diverge
For H > 1

4 midpoint Riemann sums converge:

SMP
n =

n−1∑
i=0

f ′
(

BH
ti + T

2n

)
∆BH

ti
P→ f (BH

T )− f (0)

For H > 1
6 trapezoidal Riemann sums converge:

STR
n =

n−1∑
i=0

1
2

(
f ′(BH

ti ) + f (BH
ti+1

)
)

∆BH
ti

P→ f (BH
T )− f (0),

For H = 1
4 and H = 1

6 these sums diverge in L2(Ω) for f (x) = x2
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Convergence in law in the critical cases
Let W be a Brownian motion independent of BH

For H = 1
4

SMP
n

L−→
∫ T

0
f ′(B

1
4
t ) ∗ dB

1
4
t = f (B

1
4
T )− f (0)− κ1

2

∫ T

0
f ′′(B

1
4
t )dWt

For H = 1
6

STR
n

L−→
∫ T

0
f ′(B

1
6
t ) ∗ dB

1
6
t = f (B

1
6
T )− f (0)− κ2

2

∫ T

0
f ′′′(B

1
6
t )dWt

κ1 =
√

2 +
∑∞

r=1(−1)rρ 1
4
(r)2 ∼ 1290 and κ2 = 1√

6

Proof is based on Taylor expansion and non central limit theorems
for Skorohod integrals using techniques of Malliavin calculus
(Burdzy, Swanson, Nourdin, Réveillac, Nualart, Harnett)
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Multidimensional case

Example: ∫ T

0
BH,1

t dBH,2
t ,

where BH,1 and BH,2 are two independent fractional Brownian motions
The critical value for any symmetric Riemann sum is H = 1

4

For H = 1
4

(log n)−
1
2

n−1∑
i=0

1
2

(B
1
4 ,1
ti + B

1
4 ,1
ti+1

)∆B
1
4 ,2
ti

L−→ 1√
8

WT ,

where WT is N(0,T )
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Heat equation

∂u
∂t

=
1
2

∆u, x ∈ Rd

Let pt (x) = (2πt)−
d
2 exp(−|x |2/2t). The solution with initial

condition u0 is

u(t , x) = pt ∗ u0(x) =

∫
Rd

pt (x − y)u0(y)dy = E (u0(W x
t )) ,

where W x
t = x + Wt is a d-dimensional Brownian motion starting

from x
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Feynman-Kac formula

Heat equation with a potential V (t , x);

∂u
∂t

=
1
2

∆u + uV (t , x), x ∈ Rd

Probabilistic representation of the solution:

u(t , x) = E
(

u0(W x
t ) exp

(∫ t

0
V (r ,W x

t−r )dr
))
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Stochastic heat equation

We are interested in the case where the potential V is a fractional
white noise:

∂u
∂t

=
1
2

∆u + u
∂d+1B

∂t∂x1 · · · ∂xd
, (1)

where B = {Bt ,x , t ≥ 0, x ∈ Rd} is a zero mean Gaussian random
field with covariance

E(Bt ,xBs,y ) = RH0(s, t)
d∏

i=1

RHi (xi , yi),

That is, B is a fractional Brownian sheet with Hurst parameter H0
in the time variable and Hi , 1 ≤ i ≤ d , in the space variables
For x , y ∈ R, RH(x , y) = 1

2

(
|x |2H + |y |2H − |x − y |2H

)
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Stochastic heat equation

We are interested in the case where the potential V is a fractional
white noise:

∂u
∂t

=
1
2

∆u + u
∂d+1B

∂t∂x1 · · · ∂xd
, (1)

where B = {Bt ,x , t ≥ 0, x ∈ Rd} is a zero mean Gaussian random
field with covariance

E(Bt ,xBs,y ) = RH0(s, t)
d∏

i=1

RHi (xi , yi),
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Remarks

(i) This equation is formal because the potential V = ∂d+1B
∂t∂x1···∂xd

is not
a function

(ii) We can write for a function V∫ t

0
V (r ,W x

t−r )dr =

∫ t

0

∫
Rd
δ0(W x

t−r − y)V (r , y)dydr ,

where δ0 is the Dirac delta function
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(iii) Assume Hi >
1
2 for all i . If ϕ : R+ × Rd → R, then

E
(∫

R+

∫
Rd
ϕt ,xdBt ,x

)2

= αH

∫
R2

+×R2d
ϕ(t , x)ϕ(s, y)

×|s − t |2H0−2
d∏

i=1

|xi − yi |2Hi−2dsdtdxdy ,

where αH =
∏d

i=0 Hi(2Hi − 1).

Let Hd be the class of functions or distributions such that this
integral exists
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Theorem (Hu-Nualart-Song ’11)
Let W be a d-dimensional Brownian motion independent of B.
Assume u0 is bounded and

2H0 +
d∑

i=1

Hi > d + 1.

Then

u(t , x) = EW
[
u0(W x

t ) exp
(∫ t

0

∫
Rd
δ0(W x

t−r − y)dBr ,y

)]
is well defined and satisfies Equation (1), where EW denotes the
expectation with respect to W
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Sketch of the proof

STEP 1

Set

Φ(t , x) =

∫ t

0

∫
Rd
δ0(W x

t−r − y)dBr ,y

We claim that (r , y) 7→ δ0(W x
t−r − y)1[0,t](r) belongs to Hd and this

integral exists

David Nualart (Kansas University) Stochastic calculus with respect to fBm 6th ECM 24 / 31



Conditionally to W , Φ(t , x) is Gaussian with zero mean and

EB(Φ(t , x)2) = αH

∫ t

0

∫ t

0
|r − s|2H0−2

d∏
i=1

∣∣∣W i
r −W i

s

∣∣∣2Hi−2
drds

This implies

E(Φ(t , x)2) = αH

d∏
i=1

E|ξ|2Hi−2
∫ t

0

∫ t

0
|r − s|2H0+

∑d
i=1 Hi−d−2drds,

where ξ is N(0,1)

Therefore, E(Φ(t , x)2) <∞ if and only if 2H0 +
∑d

i=1 Hi > d + 1
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STEP 2

For any λ ∈ R, we have

Eexp
(
λ

∫ t

0

∫
Rd
δ0(W x

t−r − y)dBr ,y

)
<∞

Integrating with respect to B and using the scaling properties of W
it suffices to show that E(eλY ) <∞, where

Y =

∫ 1

0

∫ 1

0
|s − r |2H0−2

d∏
i=1

|W i
s −W i

r |2Hi−2drds

This follows applying Le Gall’s method to derive the exponential
integrability of the renormalized self-intersection local time of the
planar Brownian motion
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STEP 3

The random field u(t , x) satisfies Equation (1) in the weak sense: for
any ϕ ∈ C∞0 (Rd ) and t ≥ 0∫

Rd
u(t , x)ϕ(x)dx =

∫
Rd

u0(x)ϕ(x)dx

+
1
2

∫ t

0

∫
Rd

u(s, x)∆ϕ(x)dxds

+

∫ t

0

∫
Rd

u(s, x)ϕ(x) ◦ dBs,x ,

where the stochastic integral is a Stratonovich integral
The proof is based on Malliavin calculus
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Remarks
(i) In the case d = 1, H1 = 1

2 and H0 >
3
4 , for ϕ ∈ Hd

E
(∫

R+×R
ϕt ,xdBt ,x

)2

= αH0

∫
R2

+×R
ϕt ,xϕs,x |s − t |2H0−2dxdsdt ,

and the previous results can be extended
(ii) Hölder continuity of the solution: Suppose that

κ = 2H0 +
∑d

i=1 Hi − d − 1 > 0, and assume u0 = 1. Then for any
ρ ∈

(
0, κ2

)
and s, t , x , y in a compact set,

|u(t , y)− u(s, x)| ≤ C(|t − s|ρ + |y − x |2ρ)
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Equation in the Itô sense

Suppose that H0 = 1
2

Feynman-Kac formula does not hold because we would need∑d
i=1 Hi > d

However, one can formulate and solve the equation in the Itô
sense:

Definition
An adapted random field u = {u(t , x), t ≥ 0, x ∈ R} is a mild solution to
Equation (1) in the Itô sense if for any (t , x)

u(t , x) = pt ∗ u0(x) +

∫ t

0

∫
Rd

pt−s(x − y)u(s, y)δBs,y ,

where the stochastic integral is an Itô integral
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Results

There is a unique mild solution if
∑d

i=1 Hi > d − 1 (and Hi ≥ 1
2 for

1 ≤ i ≤ d). This is a particular case of a stochastic heat equation
with driven by a Gaussian noise with homogeneous spacial
covariance (Dalang’s approach)
The case d = 1 and H1 = 1

2 (space-time white noise) corresponds
to the classical Walsh equation (continuous Anderson model):

∂u
∂t

=
1
2
∂2u
∂x2 + u

∂2B
∂t∂x

For d = 2 we need H1 + H2 > 1, so we cannot consider a
space-time white noise
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Conclusions

Itô formulas in law hold in the critical cases for different types of
symmetric Riemann sums. Only the midpoint and trapezoidal
Riemann sums have been considered
Feynman-Kac formula provides a solution in the Stratonovich
sense to the stochastic heat equation with a random potential
which is a fractional Brownian sheet, assuming
2H0 +

∑d
i=1 Hi > d + 1. Open problems for this equation are:

I Uniqueness of a weak solution
I Asymptotic behavior as t →∞ of E(u(t , x)p), where p is an integer
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