Stochastic calculus with respect to the fractional Brownian motion

David Nualart

Department of Mathematics
Kansas University
July 4th, 2012 / 6th ECM

Outline

(1) Fractional Brownian motion
(2) Stochastic calculus. Riemann sums approach
(3) Stochastic heat equation driven by a fractional noise

Stochastic Processes

- A stochastic process $X=\left\{X_{t}, t \geq 0\right\}$ is a family of random variables

$$
X_{t}: \Omega \rightarrow \mathbb{R}
$$

defined on a probability space (Ω, \mathcal{F}, P)
X is called Gaussian if for all $0 \leq t_{1}$
law of $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ on \mathbb{R}^{n} is normal
The law of a Gaussian process is determined by the mean function $\mathbb{E}\left(X_{t}\right)$ and the covariance function

Stochastic Processes

- A stochastic process $X=\left\{X_{t}, t \geq 0\right\}$ is a family of random variables

$$
X_{t}: \Omega \rightarrow \mathbb{R}
$$

defined on a probability space (Ω, \mathcal{F}, P)

- X is called Gaussian if for all $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the probability law of $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ on \mathbb{R}^{n} is normal
The law of a Gaussian process is determined by the mean function $\mathbb{E}\left(X_{t}\right)$ and the covariance function

Stochastic Processes

- A stochastic process $X=\left\{X_{t}, t \geq 0\right\}$ is a family of random variables

$$
X_{t}: \Omega \rightarrow \mathbb{R}
$$

defined on a probability space (Ω, \mathcal{F}, P)

- X is called Gaussian if for all $0 \leq t_{1}<t_{2}<\cdots<t_{n}$ the probability law of $\left(X_{t_{1}}, \ldots, X_{t_{n}}\right)$ on \mathbb{R}^{n} is normal
- The law of a Gaussian process is determined by the mean function $\mathbb{E}\left(X_{t}\right)$ and the covariance function

$$
\operatorname{Cov}\left(X_{t}, X_{s}\right)=\mathbb{E}\left(\left(X_{t}-\mathbb{E}\left(X_{t}\right)\right)\left(X_{s}-\mathbb{E}\left(X_{s}\right)\right)\right)
$$

Brownian Motion

The Brownian motion (or Wiener process) is a Gaussian process $W=\left\{W_{t}, t \geq 0\right\}$ with zero mean and covariance

$$
\mathbb{E}\left(W_{s} W_{t}\right)=\min (s, t)
$$

Brownian Motion

The Brownian motion (or Wiener process) is a Gaussian process $W=\left\{W_{t}, t \geq 0\right\}$ with zero mean and covariance

$$
\mathbb{E}\left(W_{s} W_{t}\right)=\min (s, t)
$$

- $\mathbb{E}\left(W_{t}-W_{s}\right)^{2}=|t-s|$
- W has independent increments
- The formal derivative $\frac{d W_{t}}{d t}$ is used as input noise in dynamical systems

Brownian Motion

The Brownian motion (or Wiener process) is a Gaussian process $W=\left\{W_{t}, t \geq 0\right\}$ with zero mean and covariance

$$
\mathbb{E}\left(W_{s} W_{t}\right)=\min (s, t)
$$

- $\mathbb{E}\left(W_{t}-W_{s}\right)^{2}=|t-s|$
- W has independent increments

The formal derivative $\frac{d W_{t}}{d t}$ is used as input noise in dynamical systems - The stochas tic calculus developed by Itô in the 40 's permits to formulate and solve stochastic differential equations $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$

Brownian Motion

The Brownian motion (or Wiener process) is a Gaussian process $W=\left\{W_{t}, t \geq 0\right\}$ with zero mean and covariance

$$
\mathbb{E}\left(W_{s} W_{t}\right)=\min (s, t)
$$

- $\mathbb{E}\left(W_{t}-W_{s}\right)^{2}=|t-s|$
- W has independent increments
- The formal derivative $\frac{d W_{t}}{d t}$ is used as input noise in dynamical systems
- The stochastic calculus developed by Itô in the 40's permits to formulate and solve stochastic differential equations

Brownian Motion

The Brownian motion (or Wiener process) is a Gaussian process $W=\left\{W_{t}, t \geq 0\right\}$ with zero mean and covariance

$$
\mathbb{E}\left(W_{s} W_{t}\right)=\min (s, t)
$$

- $\mathbb{E}\left(W_{t}-W_{s}\right)^{2}=|t-s|$
- W has independent increments
- The formal derivative $\frac{d W_{t}}{d t}$ is used as input noise in dynamical systems
- The stochastic calculus developed by Itô in the 40's permits to formulate and solve stochastic differential equations $d X_{t}=b\left(X_{t}\right) d t+\sigma\left(X_{t}\right) d W_{t}$

Applications in hydrology, telecommunications, queueing and mathematical finance require input noises without independent increments and possessing:

- Stationary and correlated increments
- Irregular trajectories $t \rightarrow X_{t}(\omega)$

Fractional Brownian Motion

The fractional Brownian motion (fBm) $B^{H}=\left\{B_{t}^{H}, t \geq 0\right\}$ is a zero mean Gaussian process with covariance

$$
\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=R_{H}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right)
$$

$H \in(0,1)$ is called the Hurst parameter

Fractional Brownian Motion

The fractional Brownian motion (fBm) $B^{H}=\left\{B_{t}^{H}, t \geq 0\right\}$ is a zero mean Gaussian process with covariance

$$
\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=R_{H}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right)
$$

$H \in(0,1)$ is called the Hurst parameter

- $\mathbb{E}\left(B_{t}^{H}-B_{s}^{H}\right)^{2}=|t-s|^{2 H}$

Fractional Brownian Motion

The fractional Brownian motion (fBm) $B^{H}=\left\{B_{t}^{H}, t \geq 0\right\}$ is a zero mean Gaussian process with covariance

$$
\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=R_{H}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right)
$$

$H \in(0,1)$ is called the Hurst parameter

- $\mathbb{E}\left(B_{t}^{H}-B_{s}^{H}\right)^{2}=|t-s|^{2 H}$
- For any $\gamma<H$, with probability one, the trajectories $t \rightarrow B_{t}^{H}(\omega)$ are Hölder continuous of order γ :

$$
\left|B_{t}^{H}(\omega)-B_{s}^{H}(\omega)\right| \leq G_{\gamma, T}(\omega)|t-s|^{\gamma}, \quad s, t \in[0, T]
$$

Fractional Brownian Motion

The fractional Brownian motion (fBm) $B^{H}=\left\{B_{t}^{H}, t \geq 0\right\}$ is a zero mean Gaussian process with covariance

$$
\mathbb{E}\left(B_{s}^{H} B_{t}^{H}\right)=R_{H}(s, t)=\frac{1}{2}\left(s^{2 H}+t^{2 H}-|t-s|^{2 H}\right)
$$

$H \in(0,1)$ is called the Hurst parameter

- $\mathbb{E}\left(B_{t}^{H}-B_{s}^{H}\right)^{2}=|t-s|^{2 H}$
- For any $\gamma<H$, with probability one, the trajectories $t \rightarrow B_{t}^{H}(\omega)$ are Hölder continuous of order γ :

$$
\left|B_{t}^{H}(\omega)-B_{s}^{H}(\omega)\right| \leq G_{\gamma, T}(\omega)|t-s|^{\gamma}, \quad s, t \in[0, T]
$$

- For $H=\frac{1}{2}, B^{\frac{1}{2}}$ is a Brownian motion

Correlated increments

- For $H \neq \frac{1}{2}$,

$$
\begin{aligned}
\rho_{H}(n) & =\mathbb{E}\left(B_{1}^{H}\left(B_{n+1}^{H}-B_{n}^{H}\right)\right) \\
& =\frac{1}{2}\left((n+1)^{2 H}+(n-1)^{2 H}-2 n^{2 H}\right) \sim H(2 H-1) n^{2 H-2},
\end{aligned}
$$

as $n \rightarrow \infty$
rariation (Rogers '97)

Formally, $\left|d B_{t}^{H}\right|^{\frac{1}{H}} \sim c_{H} d t$

Correlated increments

- For $H \neq \frac{1}{2}$,

$$
\begin{aligned}
\rho_{H}(n) & =\mathbb{E}\left(B_{1}^{H}\left(B_{n+1}^{H}-B_{n}^{H}\right)\right) \\
& =\frac{1}{2}\left((n+1)^{2 H}+(n-1)^{2 H}-2 n^{2 H}\right) \sim H(2 H-1) n^{2 H-2},
\end{aligned}
$$

as $n \rightarrow \infty$
$\frac{1}{H}$-variation (Rogers '97)

- Fix $[0, T]$. Set $t_{i}=\frac{i T}{n}$ for $0 \leq i \leq n$ and define $\Delta B_{t_{i}}^{H}=B_{t_{i+1}}^{H}-B_{t_{i}}^{H}$. Then,

$$
\sum_{i=0}^{n-1}\left|\Delta B_{t_{i}}^{H}\right|^{\frac{1}{H}} \xrightarrow{L^{2}(\Omega)} c_{H} T
$$

Formally, $\left|d B_{t}^{H}\right|^{\frac{1}{H}} \sim c_{H} d t$

Stochastic calculus

Problem: Give a meaning to the formal derivative $\frac{d B^{H}}{d t}$ (fractal noise), and define integrals with respect to $d B_{t}^{H}$ of the form

$$
\int_{0}^{T} \varphi_{t} d B_{t}^{H}
$$

- For $H \neq \frac{1}{2}, B^{H}$ is not a semimartingale and we cannot use Itô's stochastic calculus to define stochastic integrals

Integration of deterministic functions

- The integral of a step function $\varphi_{t}=\sum_{j=1}^{m} a_{j} \mathbf{1}_{\left(s_{j}, s_{j+1}\right]}(t) \in \mathcal{E}$, where $t \in[0, T]$, is defined by

$$
\int_{0}^{T} \varphi_{t} d B_{t}^{H}=\sum_{j=1}^{m} a_{j}\left(B_{s_{j+1}}^{H}-B_{s_{j}}^{H}\right)
$$

- Let \mathcal{H} be the closure of \mathcal{E} with respect to the scalar product
- Linear isometry:

Integration of deterministic functions

- The integral of a step function $\varphi_{t}=\sum_{j=1}^{m} a_{j} \mathbf{1}_{\left(s_{j}, s_{j+1}\right]}(t) \in \mathcal{E}$, where $t \in[0, T]$, is defined by

$$
\int_{0}^{T} \varphi_{t} d B_{t}^{H}=\sum_{j=1}^{m} a_{j}\left(B_{s_{j+1}}^{H}-B_{s_{j}}^{H}\right)
$$

- Let \mathcal{H} be the closure of \mathcal{E} with respect to the scalar product

$$
\left\langle\mathbf{1}_{[0, t]}, \mathbf{1}_{[0, s]}\right\rangle_{\mathcal{H}}=\mathbb{E}\left(B_{t}^{H} B_{s}^{H}\right),
$$

Integration of deterministic functions

- The integral of a step function $\varphi_{t}=\sum_{j=1}^{m} a_{j} \mathbf{1}_{\left(s_{j}, s_{j+1}\right]}(t) \in \mathcal{E}$, where $t \in[0, T]$, is defined by

$$
\int_{0}^{T} \varphi_{t} d B_{t}^{H}=\sum_{j=1}^{m} a_{j}\left(B_{s_{j+1}}^{H}-B_{s_{j}}^{H}\right)
$$

- Let \mathcal{H} be the closure of \mathcal{E} with respect to the scalar product

$$
\left\langle\mathbf{1}_{[0, t]}, \mathbf{1}_{[0, s]}\right\rangle_{\mathcal{H}}=\mathbb{E}\left(B_{t}^{H} B_{s}^{H}\right)
$$

- Linear isometry:

$$
\begin{aligned}
\mathcal{H} & \longrightarrow L^{2}(\Omega, \mathcal{F}, P) \\
\varphi & \longrightarrow \int_{0}^{T} \varphi_{t} d B_{t}^{H}
\end{aligned}
$$

Spaces of integrable functions

- If $H=\frac{1}{2}, \mathcal{H}=L^{2}([0, T])$ and (Itô isometry)

$$
\mathbb{E}\left(\int_{0}^{T} \varphi_{t} d B_{t}^{\frac{1}{2}}\right)^{2}=\int_{0}^{T} \varphi_{t}^{2} d t
$$

- If $H>\frac{1}{2}$, using that

$$
\mathbb{E}\left(d B_{t}^{H} d B_{s}^{H}\right)=\frac{\partial R_{H}^{2}}{\partial s \partial t} d s d t=H(2 H-1)|s-t|^{2 H-2} d s d t
$$

we obtain

$$
\mathbb{E}\left(\int_{0}^{T} \varphi_{t} d B_{t}^{H}\right)^{2}=\alpha_{H} \int_{0}^{T} \int_{0}^{T} \varphi_{s} \varphi_{t}|s-t|^{2 H-2} d s d t
$$

where $\alpha_{H}=H(2 H-1)$
The space \mathcal{H} contains the set of functions φ such that

$$
\int_{0}^{T} \int_{0}^{T}\left|\varphi_{s}\right|\left|\varphi_{t}\right||s-t|^{2 H-2} d s d t<\infty
$$

which includes $L^{\frac{1}{H}}([0, T[)$

- If $H>\frac{1}{2}$, using that

$$
\mathbb{E}\left(d B_{t}^{H} d B_{s}^{H}\right)=\frac{\partial R_{H}^{2}}{\partial s \partial t} d s d t=H(2 H-1)|s-t|^{2 H-2} d s d t
$$

we obtain

$$
\mathbb{E}\left(\int_{0}^{T} \varphi_{t} d B_{t}^{H}\right)^{2}=\alpha_{H} \int_{0}^{T} \int_{0}^{T} \varphi_{s} \varphi_{t}|s-t|^{2 H-2} d s d t
$$

where $\alpha_{H}=H(2 H-1)$
The space \mathcal{H} contains the set of functions φ such that

$$
\int_{0}^{T} \int_{0}^{T}\left|\varphi_{s}\right|\left|\varphi_{t}\right||s-t|^{2 H-2} d s d t<\infty
$$

which includes $L^{\frac{1}{H}}([0, T[)$

- H contains distributions! (Pipiras-Taqqu '00)
- If $H<\frac{1}{2}, \mathcal{H}$ is a space of functions:

$$
\mathcal{H}=I_{T_{-}}^{\frac{1}{2}-H}\left(L^{2}([0, T])\right)
$$

where $I_{-}^{\frac{1}{2}-H}$ is the fractional integral operator of order $\frac{1}{2}-H$
For any $\gamma>\frac{1}{2}-H$,

$$
C^{\gamma}([0, T]) \subset \mathcal{H}
$$

Integration of random processess

(I) Case $H>\frac{1}{2}$

- Fix $f \in C^{2}$, then $\int_{0}^{T} f^{\prime}\left(B_{t}^{H}\right) d B_{t}^{H}$ exists as a path-wise Riemann-Stieltjes integral (Young '36), and

$$
f\left(B_{T}^{H}\right)=f(0)+\int_{0}^{T} f^{\prime}\left(B_{t}^{H}\right) d B_{t}^{H}
$$

In fact, the trajectories $t \mapsto f^{\prime}\left(B_{t}^{H}(\omega)\right)$ and $t \mapsto B_{t}^{H}(\omega)$ are Hölder continuous of order larger than $\frac{1}{2}$
(II) Case $H=\frac{1}{2}$

- Forward Riemann sums converge to the Itô integral:

$$
\sum_{i=0}^{n-1} f^{\prime}\left(B_{t_{i}}^{\frac{1}{2}}\right) \Delta B_{t_{i}}^{\frac{1}{2}}{ }^{P} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{2}}\right) \delta B_{t}^{\frac{1}{2}}
$$

which satisfies the Itô formula

$$
f\left(B_{T}^{\frac{1}{2}}\right)=f(0)+\int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{2}}\right) \delta B_{t}^{\frac{1}{2}}+\frac{1}{2} \int_{0}^{T} f^{\prime \prime}\left(B_{t}^{\frac{1}{2}}\right) d t
$$

(II) Case $H=\frac{1}{2}$

- Forward Riemann sums converge to the Itô integral:

$$
\sum_{i=0}^{n-1} f^{\prime}\left(B_{t_{i}}^{\frac{1}{2}}\right) \Delta B_{t_{i}}^{\frac{1}{2}} \xrightarrow{P} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{2}}\right) \delta B_{t}^{\frac{1}{2}}
$$

which satisfies the Itô formula

$$
f\left(B_{T}^{\frac{1}{2}}\right)=f(0)+\int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{2}}\right) \delta B_{t}^{\frac{1}{2}}+\frac{1}{2} \int_{0}^{T} f^{\prime \prime}\left(B_{t}^{\frac{1}{2}}\right) d t
$$

- Symmetric Riemann sums converge to the Stratonovich integral

$$
\int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{2}}\right) \circ d B_{t}^{\frac{1}{2}}=f\left(B_{T}^{\frac{1}{2}}\right)-f(0)
$$

(III) Case $H<\frac{1}{2}$

- Forward Riemann sums diverge
- For $H>\frac{1}{4}$ midpoint Riemann sums converge:

$$
S_{n}^{M P}=\sum_{i=0}^{n-1} f^{\prime}\left(B_{t_{i}+\frac{T}{2 n}}^{H}\right) \Delta B_{t_{i}}^{H} \xrightarrow{P} f\left(B_{T}^{H}\right)-f(0)
$$

- For $H>\frac{1}{6}$ trapezoidal Riemann sums converge:
(III) Case $H<\frac{1}{2}$
- Forward Riemann sums diverge
- For $H>\frac{1}{4}$ midpoint Riemann sums converge:

$$
S_{n}^{M P}=\sum_{i=0}^{n-1} f^{\prime}\left(B_{t_{i}+\frac{T}{2 n}}^{H}\right) \Delta B_{t_{i}}^{H} \xrightarrow{P} f\left(B_{T}^{H}\right)-f(0)
$$

- For $H>\frac{1}{6}$ trapezoidal Riemann sums converge:

$$
S_{n}^{T R}=\sum_{i=0}^{n-1} \frac{1}{2}\left(f^{\prime}\left(B_{t_{i}}^{H}\right)+f\left(B_{t_{i+1}}^{H}\right)\right) \Delta B_{t_{i}}^{H} \xrightarrow{P} f\left(B_{T}^{H}\right)-f(0),
$$

- For $H=\frac{1}{4}$ and $H=\frac{1}{6}$ these sums diverge in $L^{2}(\Omega)$ for $f(x)=x^{2}$

Convergence in law in the critical cases

Let W be a Brownian motion independent of B^{H}

- For $H=\frac{1}{4}$

$$
S_{n}^{M P} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{4}}\right) * d B_{t}^{\frac{1}{4}}=f\left(B_{T}^{\frac{1}{4}}\right)-f(0)-\frac{k_{1}}{2} \int_{0}^{T} f^{\prime \prime}\left(B_{t}^{\frac{1}{4}}\right) d W_{t}
$$

Convergence in law in the critical cases

Let W be a Brownian motion independent of B^{H}

- For $H=\frac{1}{4}$

$$
S_{n}^{M P} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{4}}\right) * d B_{t}^{\frac{1}{4}}=f\left(B_{T}^{\frac{1}{4}}\right)-f(0)-\frac{\kappa_{1}}{2} \int_{0}^{T} f^{\prime \prime}\left(B_{t}^{\frac{1}{4}}\right) d W_{t}
$$

- For $H=\frac{1}{6}$

$$
S_{n}^{T R} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{6}}\right) * d B_{t}^{\frac{1}{6}}=f\left(B_{T}^{\frac{1}{6}}\right)-f(0)-\frac{\kappa_{2}}{2} \int_{0}^{T} f^{\prime \prime \prime}\left(B_{t}^{\frac{1}{6}}\right) d W_{t}
$$

Convergence in law in the critical cases

Let W be a Brownian motion independent of B^{H}

- For $H=\frac{1}{4}$

$$
S_{n}^{M P} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{4}}\right) * d B_{t}^{\frac{1}{4}}=f\left(B_{T}^{\frac{1}{4}}\right)-f(0)-\frac{\kappa_{1}}{2} \int_{0}^{T} f^{\prime \prime}\left(B_{t}^{\frac{1}{4}}\right) d W_{t}
$$

- For $H=\frac{1}{6}$

$$
\begin{aligned}
& \quad S_{n}^{T R} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{6}}\right) * d B_{t}^{\frac{1}{6}}=f\left(B_{T}^{\frac{1}{6}}\right)-f(0)-\frac{\kappa_{2}}{2} \int_{0}^{T} f^{\prime \prime \prime}\left(B_{t}^{\frac{1}{6}}\right) d W_{t} \\
& \text { - } \kappa_{1}=\sqrt{2+\sum_{r=1}^{\infty}(-1)^{r} \rho_{\frac{1}{4}}(r)^{2}} \sim 1290 \text { and } \kappa_{2}=\frac{1}{\sqrt{6}}
\end{aligned}
$$

Convergence in law in the critical cases

Let W be a Brownian motion independent of B^{H}

- For $H=\frac{1}{4}$

$$
S_{n}^{M P} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{4}}\right) * d B_{t}^{\frac{1}{4}}=f\left(B_{T}^{\frac{1}{4}}\right)-f(0)-\frac{\kappa_{1}}{2} \int_{0}^{T} f^{\prime \prime}\left(B_{t}^{\frac{1}{4}}\right) d W_{t}
$$

- For $H=\frac{1}{6}$

$$
S_{n}^{T R} \xrightarrow{\mathcal{L}} \int_{0}^{T} f^{\prime}\left(B_{t}^{\frac{1}{6}}\right) * d B_{t}^{\frac{1}{6}}=f\left(B_{T}^{\frac{1}{6}}\right)-f(0)-\frac{\kappa_{2}}{2} \int_{0}^{T} f^{\prime \prime \prime}\left(B_{t}^{\frac{1}{6}}\right) d W_{t}
$$

- $\kappa_{1}=\sqrt{2+\sum_{r=1}^{\infty}(-1)^{r} \rho_{\frac{1}{4}}(r)^{2}} \sim 1290$ and $\kappa_{2}=\frac{1}{\sqrt{6}}$
- Proof is based on Taylor expansion and non central limit theorems for Skorohod integrals using techniques of Malliavin calculus (Burdzy, Swanson, Nourdin, Réveillac, Nualart, Harnett)

Multidimensional case

Example:

$$
\int_{0}^{T} B_{t}^{H, 1} d B_{t}^{H, 2}
$$

where $B^{H, 1}$ and $B^{H, 2}$ are two independent fractional Brownian motions

- The critical value for any symmetric Riemann sum is $H=\frac{1}{4}$
- For $H=\frac{1}{4}$

$$
(\log n)^{-\frac{1}{2}} \sum_{i=0}^{n-1} \frac{1}{2}\left(B_{t_{i}}^{\frac{1}{4}, 1}+B_{t_{i+1}}^{\frac{1}{4}, 1}\right) \Delta B_{t_{i}}^{\frac{1}{4}, 2} \xrightarrow{\mathcal{L}} \frac{1}{\sqrt{8}} W_{T}
$$

where W_{T} is $N(0, T)$

Heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}
$$

 condition U_{0} is

where $W_{t}^{x}=x+W_{t}$ is a d-dimensional Brownian motion starting

Heat equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u, \quad x \in \mathbb{R}^{d}
$$

- Let $p_{t}(x)=(2 \pi t)^{-\frac{d}{2}} \exp \left(-|x|^{2} / 2 t\right)$. The solution with initial condition u_{0} is

$$
u(t, x)=p_{t} * u_{0}(x)=\int_{\mathbb{R}^{d}} p_{t}(x-y) u_{0}(y) d y=\mathbb{E}\left(u_{0}\left(W_{t}^{x}\right)\right)
$$

where $W_{t}^{x}=x+W_{t}$ is a d-dimensional Brownian motion starting from x

Feynman-Kac formula

Heat equation with a potential $V(t, x)$;

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u V(t, x), \quad x \in \mathbb{R}^{d}
$$

Feynman-Kac formula

Heat equation with a potential $V(t, x)$;

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u V(t, x), \quad x \in \mathbb{R}^{d}
$$

- Probabilistic representation of the solution:

$$
u(t, x)=\mathbb{E}\left(u_{0}\left(W_{t}^{x}\right) \exp \left(\int_{0}^{t} V\left(r, W_{t-r}^{x}\right) d r\right)\right)
$$

Stochastic heat equation

- We are interested in the case where the potential V is a fractional white noise:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u \frac{\partial^{d+1} B}{\partial t \partial x_{1} \cdots \partial x_{d}} \tag{1}
\end{equation*}
$$

where $B=\left\{B_{t, x}, t \geq 0, x \in \mathbb{R}^{d}\right\}$ is a zero mean Gaussian random field with covariance

$$
\mathbb{E}\left(B_{t, x} B_{s, y}\right)=R_{H_{0}}(s, t) \prod_{i=1}^{d} R_{H_{i}}\left(x_{i}, y_{i}\right)
$$

Stochastic heat equation

- We are interested in the case where the potential V is a fractional white noise:

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\frac{1}{2} \Delta u+u \frac{\partial^{d+1} B}{\partial t \partial x_{1} \cdots \partial x_{d}} \tag{1}
\end{equation*}
$$

where $B=\left\{B_{t, x}, t \geq 0, x \in \mathbb{R}^{d}\right\}$ is a zero mean Gaussian random field with covariance

$$
\mathbb{E}\left(B_{t, x} B_{s, y}\right)=R_{H_{0}}(s, t) \prod_{i=1}^{d} R_{H_{i}}\left(x_{i}, y_{i}\right)
$$

- That is, B is a fractional Brownian sheet with Hurst parameter H_{0} in the time variable and $H_{i}, 1 \leq i \leq d$, in the space variables
- For $x, y \in \mathbb{R}, R_{H}(x, y)=\frac{1}{2}\left(|x|^{2 H}+|y|^{2 H}-|x-y|^{2 H}\right)$

Remarks

(i) This equation is formal because the potential $V=\frac{\partial^{d+1} B}{\partial \operatorname{t\partial } \partial x_{1} \cdots \partial x_{d}}$ is not a function
(ii) We can write for a function V

$$
\int_{0}^{t} V\left(r, W_{t-r}^{X}\right) d r=\int_{0}^{t} \int_{\mathbb{R}^{d}} \delta_{0}\left(W_{t-r}^{x}-y\right) V(r, y) d y d r,
$$

where δ_{0} is the Dirac delta function
(iii) Assume $H_{i}>\frac{1}{2}$ for all i. If $\varphi: \mathbb{R}_{+} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$, then

$$
\begin{aligned}
& \mathbb{E}\left(\int_{\mathbb{R}_{+}} \int_{\mathbb{R}^{d}} \varphi_{t, x} d B_{t, x}\right)^{2}=\alpha_{\mathbf{H}} \int_{\mathbb{R}_{+}^{2} \times \mathbb{R}^{2 d}} \varphi(t, x) \varphi(s, y) \\
& \quad \times|s-t|^{2 H_{0}-2} \prod_{i=1}^{d}\left|x_{i}-y_{i}\right|^{2 H_{i}-2} d s d t d x d y
\end{aligned}
$$

where $\alpha_{\mathbf{H}}=\prod_{i=0}^{d} H_{i}\left(2 H_{i}-1\right)$.
Let \mathcal{H}_{d} be the class of functions or distributions such that this integral exists

Theorem (Hu-Nualart-Song '11)

Let W be a d-dimensional Brownian motion independent of B. Assume u_{0} is bounded and

$$
2 H_{0}+\sum_{i=1}^{d} H_{i}>d+1 .
$$

Then

$$
u(t, x)=\mathbb{E}^{W}\left[u_{0}\left(W_{t}^{x}\right) \exp \left(\int_{0}^{t} \int_{\mathbb{R}^{d}} \delta_{0}\left(W_{t-r}^{X}-y\right) d B_{r, y}\right)\right]
$$

is well defined and satisfies Equation (1), where \mathbb{E}^{W} denotes the expectation with respect to W

Sketch of the proof

STEP 1

Set

$$
\Phi(t, x)=\int_{0}^{t} \int_{\mathbb{R}^{d}} \delta_{0}\left(W_{t-r}^{x}-y\right) d B_{r, y}
$$

We claim that $(r, y) \mapsto \delta_{0}\left(W_{t-r}^{x}-y\right) \mathbf{1}_{[0, t]}(r)$ belongs to \mathcal{H}_{d} and this integral exists

- Conditionally to $W, \Phi(t, x)$ is Gaussian with zero mean and

$$
\mathbb{E}^{B}\left(\Phi(t, x)^{2}\right)=\alpha_{\mathbf{H}} \int_{0}^{t} \int_{0}^{t}|r-s|^{2 H_{0}-2} \prod_{i=1}^{d}\left|W_{r}^{i}-W_{s}^{i}\right|^{2 H_{i}-2} d r d s
$$

- This implies

$$
\mathbb{E}\left(\Phi(t, x)^{2}\right)=\alpha_{\mathbf{H}} \prod_{i=1}^{d} \mathbb{E}|\xi|^{2 H_{i}-2} \int_{0}^{t} \int_{0}^{t}|r-s|^{2 H_{0}+\sum_{i=1}^{d} H_{i}-d-2} d r d s
$$

where ξ is $N(0,1)$

- Therefore, $\mathbb{E}\left(\Phi(t, x)^{2}\right)<\infty$ if and only if $2 H_{0}+\sum_{i=1}^{d} H_{i}>d+1$

STEP 2

For any $\lambda \in \mathbb{R}$, we have

$$
\mathbb{E} \exp \left(\lambda \int_{0}^{t} \int_{\mathbb{R}^{d}} \delta_{0}\left(W_{t-r}^{x}-y\right) d B_{r, y}\right)<\infty
$$

- Integrating with respect to B and using the scaling properties of W it suffices to show that $\mathbb{E}\left(e^{\lambda Y}\right)<\infty$, where

> This follows applying Le Gall's method to derive the exponential integrability of the renormalized self-intersection local time of the planar Brownian motion

STEP 2

For any $\lambda \in \mathbb{R}$, we have

$$
\mathbb{E} \exp \left(\lambda \int_{0}^{t} \int_{\mathbb{R}^{d}} \delta_{0}\left(W_{t-r}^{x}-y\right) d B_{r, y}\right)<\infty
$$

- Integrating with respect to B and using the scaling properties of W it suffices to show that $\mathbb{E}\left(e^{\lambda Y}\right)<\infty$, where

$$
Y=\int_{0}^{1} \int_{0}^{1}|s-r|^{2 H_{0}-2} \prod_{i=1}^{d}\left|W_{s}^{i}-W_{r}^{i}\right|^{2 H_{i}-2} d r d s
$$

This follows applying Le Gall's method to derive the exponential
integrability of the renormalized self-intersection local time of the planar Brownian motion

STEP 2

For any $\lambda \in \mathbb{R}$, we have

$$
\mathbb{E} \exp \left(\lambda \int_{0}^{t} \int_{\mathbb{R}^{d}} \delta_{0}\left(W_{t-r}^{x}-y\right) d B_{r, y}\right)<\infty
$$

- Integrating with respect to B and using the scaling properties of W it suffices to show that $\mathbb{E}\left(e^{\lambda Y}\right)<\infty$, where

$$
Y=\int_{0}^{1} \int_{0}^{1}|s-r|^{2 H_{0}-2} \prod_{i=1}^{d}\left|W_{s}^{i}-W_{r}^{i}\right|^{2 H_{i}-2} d r d s
$$

- This follows applying Le Gall's method to derive the exponential integrability of the renormalized self-intersection local time of the planar Brownian motion

STEP 3

The random field $u(t, x)$ satisfies Equation (1) in the weak sense: for any $\varphi \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ and $t \geq 0$

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}} u(t, x) \varphi(x) d x=\int_{\mathbb{R}^{d}} u_{0}(x) \varphi(x) d x \\
& \quad+\frac{1}{2} \int_{0}^{t} \int_{\mathbb{R}^{d}} u(s, x) \Delta \varphi(x) d x d s \\
& \quad+\int_{0}^{t} \int_{\mathbb{R}^{d}} u(s, x) \varphi(x) \circ d B_{s, x}
\end{aligned}
$$

where the stochastic integral is a Stratonovich integral

- The proof is based on Malliavin calculus

Remarks

(i) In the case $d=1, H_{1}=\frac{1}{2}$ and $H_{0}>\frac{3}{4}$, for $\varphi \in \mathcal{H}_{d}$

$$
E\left(\int_{\mathbb{R}_{+} \times \mathbb{R}} \varphi_{t, x} d B_{t, x}\right)^{2}=\alpha_{H_{0}} \int_{\mathbb{R}_{+}^{2} \times \mathbb{R}} \varphi_{t, x} \varphi_{s, x}|s-t|^{2 H_{0}-2} d x d s d t
$$

and the previous results can be extended

Remarks

(i) In the case $d=1, H_{1}=\frac{1}{2}$ and $H_{0}>\frac{3}{4}$, for $\varphi \in \mathcal{H}_{d}$

$$
E\left(\int_{\mathbb{R}_{+} \times \mathbb{R}} \varphi_{t, x} d B_{t, x}\right)^{2}=\alpha_{H_{0}} \int_{\mathbb{R}_{+}^{2} \times \mathbb{R}} \varphi_{t, x} \varphi_{s, x}|s-t|^{2 H_{0}-2} d x d s d t
$$

and the previous results can be extended
(ii) Hölder continuity of the solution: Suppose that
$\kappa=2 H_{0}+\sum_{i=1}^{d} H_{i}-d-1>0$, and assume $u_{0}=1$. Then for any
$\rho \in\left(0, \frac{\kappa}{2}\right)$ and s, t, x, y in a compact set,

$$
|u(t, y)-u(s, x)| \leq C\left(|t-s|^{\rho}+|y-x|^{2 \rho}\right)
$$

Equation in the Itô sense

Suppose that $H_{0}=\frac{1}{2}$

- Feynman-Kac formula does not hold because we would need $\sum_{i=1}^{d} H_{i}>d$
-lowever, one can formulate and solve the equation in the Itô sense:
where the stochastic integral is an Itô integral

Equation in the Itô sense

Suppose that $H_{0}=\frac{1}{2}$

- Feynman-Kac formula does not hold because we would need $\sum_{i=1}^{d} H_{i}>d$
- However, one can formulate and solve the equation in the Itô sense:

Definition

An adapted random field $u=\{u(t, x), t \geq 0, x \in \mathbb{R}\}$ is a mild solution to Equation (1) in the Itô sense if for any (t, x)

$$
u(t, x)=p_{t} * u_{0}(x)+\int_{0}^{t} \int_{\mathbb{R}^{d}} p_{t-s}(x-y) u(s, y) \delta B_{s, y}
$$

where the stochastic integral is an Itô integral

Results

- There is a unique mild solution if $\sum_{i=1}^{d} H_{i}>d-1$ (and $H_{i} \geq \frac{1}{2}$ for $1 \leq i \leq d$). This is a particular case of a stochastic heat equation with driven by a Gaussian noise with homogeneous spacial covariance (Dalang's approach)
to the classical Walsh equation (continuous Anderson model):
space-time white noise

Results

- There is a unique mild solution if $\sum_{i=1}^{d} H_{i}>d-1$ (and $H_{i} \geq \frac{1}{2}$ for $1 \leq i \leq d$). This is a particular case of a stochastic heat equation with driven by a Gaussian noise with homogeneous spacial covariance (Dalang's approach)
- The case $d=1$ and $H_{1}=\frac{1}{2}$ (space-time white noise) corresponds to the classical Walsh equation (continuous Anderson model):

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial^{2} B}{\partial t \partial x}
$$

Results

- There is a unique mild solution if $\sum_{i=1}^{d} H_{i}>d-1$ (and $H_{i} \geq \frac{1}{2}$ for $1 \leq i \leq d$). This is a particular case of a stochastic heat equation with driven by a Gaussian noise with homogeneous spacial covariance (Dalang's approach)
- The case $d=1$ and $H_{1}=\frac{1}{2}$ (space-time white noise) corresponds to the classical Walsh equation (continuous Anderson model):

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+u \frac{\partial^{2} B}{\partial t \partial x}
$$

- For $d=2$ we need $H_{1}+H_{2}>1$, so we cannot consider a space-time white noise

Conclusions

- Itô formulas in law hold in the critical cases for different types of symmetric Riemann sums. Only the midpoint and trapezoidal Riemann sums have been considered
- Feynman-Kac formula provides a solution in the Stratonovich sense to the stochastic heat equation with a random potential which is a fractional Brownian sheet, assuming $2 H_{0}+\sum_{i=1}^{d} H_{i}>d+1$. Open problems for this equation are:
- Uniqueness of a weak solution
- Asymptotic behavior as $t \rightarrow \infty$ of $\mathbb{E}\left(u(t, x)^{p}\right)$, where p is an integer

