Approximate (Abelian) groups

Tom Sanders
University of Oxford
4th July 2012

Aim

Find a useful approximate version of subgroup.

Aim

Find a useful approximate version of subgroup.

- G is an Abelian group throughout.

Aim

Find a useful approximate version of subgroup.

- G is an Abelian group throughout.

Characterisation of cosets

$A \subset G$ is a coset (of a subgroup) in G iff $A \neq \emptyset$ and

$$
x, y, z \in A \Rightarrow x+y-z \in A
$$

The 99% question

Aim

Find a useful approximate version of subgroup.

- G is an Abelian group throughout.

Characterisation of cosets

$A \subset G$ is a coset (of a subgroup) in G iff $A \neq \emptyset$ and

$$
x, y, z \in A \Rightarrow x+y-z \in A
$$

Rough question

What if only 99% of triples $x, y, z \in A$ have $x+y-z \in A$?

The 99\% question

Formally put

$$
E(A):=\#\left\{(x, y, z) \in A^{3}: x+y-z \in A\right\} .
$$

The 99\% question

Formally put

$$
E(A):=\#\left\{(x, y, z) \in A^{3}: x+y-z \in A\right\} .
$$

Called additive energy of A.

The 99\% question

Formally put

$$
E(A):=\#\left\{(x, y, z) \in A^{3}: x+y-z \in A\right\} .
$$

Called additive energy of A.
Question
Which sets $A \subset G$ have $E(A) \geq(1-\epsilon)|A|^{3}$?

The 99\% question

Formally put

$$
E(A):=\#\left\{(x, y, z) \in A^{3}: x+y-z \in A\right\} .
$$

Called additive energy of A.
Question
Which sets $A \subset G$ have $E(A) \geq(1-\epsilon)|A|^{3}$?

- Easy: $E(A) \leq|A|^{3}$.

The 99\% question

Formally put

$$
E(A):=\#\left\{(x, y, z) \in A^{3}: x+y-z \in A\right\} .
$$

Called additive energy of A.
Question
Which sets $A \subset G$ have $E(A) \geq(1-\epsilon)|A|^{3}$?

- Easy: $E(A) \leq|A|^{3}$.
- Before: $A \subset G$ is a coset in G iff $E(A)=|A|^{3}$.

Formally put

$$
E(A):=\#\left\{(x, y, z) \in A^{3}: x+y-z \in A\right\} .
$$

Called additive energy of A.
Question
Which sets $A \subset G$ have $E(A) \geq(1-\epsilon)|A|^{3}$?

- Easy: $E(A) \leq|A|^{3}$.
- Before: $A \subset G$ is a coset in G iff $E(A)=|A|^{3}$.
- Think of A finite, $|A| \rightarrow \infty$ and $\epsilon \lesssim 1 / 100$.

Examples for the 99\% question

Example
H is a coset in G and A has

- $|A \cap H| \geq(1-\eta)|A|$;
- and $|A \cap H| \geq(1-\eta)|H|$.

Examples for the 99\% question

Example

H is a coset in G and A has

- $|A \cap H| \geq(1-\eta)|A|$;
- and $|A \cap H| \geq(1-\eta)|H|$.

Short calculation:

$$
E(A) \geq(1-O(\eta))|A|^{3} .
$$

Proposition

Suppose that $E(A) \geq(1-\epsilon)|A|^{3}$. Then there is some coset H in G such that

- $|A \cap H| \geq\left(1-O\left(\epsilon^{1 / 2}\right)\right)|A| ;$
- and $|A \cap H| \geq\left(1-O\left(\epsilon^{1 / 2}\right)\right)|H|$.

Proposition

Suppose that $E(A) \geq(1-\epsilon)|A|^{3}$. Then there is some coset H in G such that

- $|A \cap H| \geq\left(1-O\left(\epsilon^{1 / 2}\right)\right)|A| ;$
- and $|A \cap H| \geq\left(1-O\left(\epsilon^{1 / 2}\right)\right)|H|$.
- Weakness: these approximate groups are all close to actual groups.

The 1\% question

New question
Which sets $A \subset G$ have $E(A) \geq \delta|A|^{3}$?

The 1\% question

New question
Which sets $A \subset G$ have $E(A) \geq \delta|A|^{3}$?

- Think of A finite, $|A| \rightarrow \infty$ and $\delta=\Omega(1)$.

New question

Which sets $A \subset G$ have $E(A) \geq \delta|A|^{3}$?

- Think of A finite, $|A| \rightarrow \infty$ and $\delta=\Omega(1)$.

Idea for examples: Q a convex body in \mathbb{R}^{d} e.g. a cube. Then

$$
\mathbb{P}(x+y-z \in Q \mid x, y, z \in Q) \geq \exp (-O(d))
$$

New question

Which sets $A \subset G$ have $E(A) \geq \delta|A|^{3}$?

- Think of A finite, $|A| \rightarrow \infty$ and $\delta=\Omega(1)$.

Idea for examples: Q a convex body in \mathbb{R}^{d} e.g. a cube. Then

$$
\mathbb{P}(x+y-z \in Q \mid x, y, z \in Q) \geq \exp (-O(d))
$$

In some sense ' $E(Q) \geq \exp (-O(d))|Q|^{3}$ '.

Examples for the 1\% question

Convex progressions

A d-dimensional convex progression in G is a set of the form $\phi\left(Q \cap \mathbb{Z}^{d}\right)$ where

- Q is a symmetric convex body in \mathbb{R}^{d};
- and $\phi: \mathbb{Z}^{d} \rightarrow G$ is a homomorphism.

Examples for the 1% question

Convex progressions

A d-dimensional convex progression in G is a set of the form $\phi\left(Q \cap \mathbb{Z}^{d}\right)$ where

- Q is a symmetric convex body in \mathbb{R}^{d};
- and $\phi: \mathbb{Z}^{d} \rightarrow G$ is a homomorphism.

Convex coset progressions
A d-dimensional convex coset progression in G is then a set $H+P$ where

- P is a d-dimensional convex progression;
- and H is a coset in G.

Examples for the 1% question

Example

M is a convex coset progression and A is any set such that

- $|A \cap M| \geq \exp (-d)|A|$;
- $|A \cap M| \geq \exp (-d)|M|$;
- and $\operatorname{dim} M \leq d$.

Examples for the 1% question

Example

M is a convex coset progression and A is any set such that

- $|A \cap M| \geq \exp (-d)|A|$;
- $|A \cap M| \geq \exp (-d)|M|$;
- and $\operatorname{dim} M \leq d$.

Short calculation:

$$
E(A) \geq \exp (-O(d))|A|^{3}
$$

The 1\% theorem: Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.

The 1\% theorem: Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Balog and Szemerédi;

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Balog and Szemerédi;
- G torsion-free, Freĭman;

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Balog and Szemerédi;
- G torsion-free, Freĭman;
- G bounded exponent, Ruzsa;

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Balog and Szemerédi;
- G torsion-free, Freĭman;
- G bounded exponent, Ruzsa;
- G arbitrary (Abelian) Green and Ruzsa.

Why do we care?

Why do we care?

- Result is useful: empirically true with numerous applications following Gowers.

Why do we care?

- Result is useful: empirically true with numerous applications following Gowers.
- Hypothesis easily satisfied: convex coset progressions are ubiquitous.

Why do we care?

- Result is useful: empirically true with numerous applications following Gowers.
- Hypothesis easily satisfied: convex coset progressions are ubiquitous. (Contrasts with subgroups e.g. $G=\mathbb{Z} / p \mathbb{Z}$.)

Why do we care?

- Result is useful: empirically true with numerous applications following Gowers.
- Hypothesis easily satisfied: convex coset progressions are ubiquitous. (Contrasts with subgroups e.g. $G=\mathbb{Z} / p \mathbb{Z}$.)
- Output useful: convex coset progressions support (rough) harmonic analysis.

Why do we care?

- Result is useful: empirically true with numerous applications following Gowers.
- Hypothesis easily satisfied: convex coset progressions are ubiquitous. (Contrasts with subgroups e.g. $G=\mathbb{Z} / p \mathbb{Z}$.)
- Output useful: convex coset progressions support (rough) harmonic analysis.
- Rough equivalence: any set satisfying the conclusion also satisfies the hypothesis with δ replaced by $\exp (-O(d(\delta)))$.

Quality of the rough equivalence in Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.

Quality of the rough equivalence in Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Green and Ruzsa: $d(\delta)=\delta^{-O(1)}$.

Quality of the rough equivalence in Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Green and Ruzsa: $d(\delta)=\delta^{-O(1)}$.
- Schoen (breakthrough): $d(\delta)=\exp \left(O\left(\sqrt{\log \delta^{-1}}\right)\right)=\delta^{-o(1)}$.

Quality of the rough equivalence in Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Green and Ruzsa: $d(\delta)=\delta^{-O(1)}$.
- Schoen (breakthrough): $d(\delta)=\exp \left(O\left(\sqrt{\log \delta^{-1}}\right)\right)=\delta^{-o(1)}$.
- S.: $d(\delta)=\log ^{O(1)} \delta^{-1}$.

Quality of the rough equivalence in Freĭman's theorem

Theorem

Suppose that $E(A) \geq \delta|A|^{3}$. Then there is a convex coset progression M such that

- $|A \cap M| \geq \exp (-d(\delta))|A|$;
- $|A \cap M| \geq \exp (-d(\delta))|M|$;
- and $\operatorname{dim} M \leq d(\delta)$.
- Green and Ruzsa: $d(\delta)=\delta^{-O(1)}$.
- Schoen (breakthrough): $d(\delta)=\exp \left(O\left(\sqrt{\log \delta^{-1}}\right)\right)=\delta^{-o(1)}$.
- S.: $d(\delta)=\log ^{O(1)} \delta^{-1}$.
- Polynomial-Freĭman-Ruzsa conjecture: $d(\delta)=O\left(\log \delta^{-1}\right)$.

The obstacles

- (Random sets) $H \leq G . A \subset H$ is chosen randomly with density δ. Then $E(A) \approx \delta|A|^{3}$ (w.h.p.)
- (Random sets) $H \leq G . A \subset H$ is chosen randomly with density δ. Then $E(A) \approx \delta|A|^{3}$ (w.h.p.)
- (Independent copies of same subgroup) $H \leq G . k \sim \delta^{-1}$ and $\left\{x_{i}+H\right\}_{i=1}^{k}$ is independent in $G / H . A=\bigcup_{i=1}^{k}\left(x_{i}+H\right)$ has $E(A) \approx \delta|A|^{3}$.
- (Random sets) $H \leq G . A \subset H$ is chosen randomly with density δ. Then $E(A) \approx \delta|A|^{3}$ (w.h.p.)
- (Independent copies of same subgroup) $H \leq G . k \sim \delta^{-1}$ and $\left\{x_{i}+H\right\}_{i=1}^{k}$ is independent in $G / H . A=\bigcup_{i=1}^{k}\left(x_{i}+H\right)$ has $E(A) \approx \delta|A|^{3}$.
- (Independent copies of different subgroups) $k \sim \delta^{-1 / 2}$ and H_{1}, \ldots, H_{k} are 'totally different' subgroups of same size. $A=\bigcup_{i=1}^{k} H_{i}$ has $E(A) \approx \delta|A|^{3}$.
- (Random sets) $H \leq G . A \subset H$ is chosen randomly with density δ. Then $E(A) \approx \delta|A|^{3}$ (w.h.p.)
- (Independent copies of same subgroup) $H \leq G . k \sim \delta^{-1}$ and $\left\{x_{i}+H\right\}_{i=1}^{k}$ is independent in $G / H . A=\bigcup_{i=1}^{k}\left(x_{i}+H\right)$ has $E(A) \approx \delta|A|^{3}$.
- (Independent copies of different subgroups) $k \sim \delta^{-1 / 2}$ and H_{1}, \ldots, H_{k} are 'totally different' subgroups of same size. $A=\bigcup_{i=1}^{k} H_{i}$ has $E(A) \approx \delta|A|^{3}$.

Argument de-couples into three parts.

De-coupling the argument: step 1

Balog-Szemerédi-Gowers lemma

Suppose $E(A) \geq \delta|A|^{3}$. Then there is $A^{\prime} \subset A$ with

$$
\left|A^{\prime}\right| \geq \delta^{O(1)}|A| \text { and }\left|A^{\prime}-A^{\prime}\right| \leq \delta^{-O(1)}\left|A^{\prime}\right|
$$

De-coupling the argument: step 1

Balog-Szemerédi-Gowers lemma

Suppose $E(A) \geq \delta|A|^{3}$. Then there is $A^{\prime} \subset A$ with

$$
\left|A^{\prime}\right| \geq \delta^{O(1)}|A| \text { and }\left|A^{\prime}-A^{\prime}\right| \leq \delta^{-O(1)}\left|A^{\prime}\right|
$$

$\left(A^{\prime}-A^{\prime}:=\left\{a-a^{\prime}: a, a^{\prime} \in A^{\prime}\right\}.\right)$

De-coupling the argument: step 1

Balog-Szemerédi-Gowers lemma

Suppose $E(A) \geq \delta|A|^{3}$. Then there is $A^{\prime} \subset A$ with

$$
\left|A^{\prime}\right| \geq \delta^{O(1)}|A| \text { and }\left|A^{\prime}-A^{\prime}\right| \leq \delta^{-O(1)}\left|A^{\prime}\right|
$$

$\left(A^{\prime}-A^{\prime}:=\left\{a-a^{\prime}: a, a^{\prime} \in A^{\prime}\right\}.\right)$

- Eliminates the third structure-type.

De-coupling the argument: step 1

Balog-Szemerédi-Gowers lemma

Suppose $E(A) \geq \delta|A|^{3}$. Then there is $A^{\prime} \subset A$ with

$$
\left|A^{\prime}\right| \geq \delta^{O(1)}|A| \text { and }\left|A^{\prime}-A^{\prime}\right| \leq \delta^{-O(1)}\left|A^{\prime}\right|
$$

$\left(A^{\prime}-A^{\prime}:=\left\{a-a^{\prime}: a, a^{\prime} \in A^{\prime}\right\}.\right)$

- Eliminates the third structure-type.
- Polynomial bounds.

De-coupling the argument: step 1

Balog-Szemerédi-Gowers lemma

Suppose $E(A) \geq \delta|A|^{3}$. Then there is $A^{\prime} \subset A$ with

$$
\left|A^{\prime}\right| \geq \delta^{O(1)}|A| \text { and }\left|A^{\prime}-A^{\prime}\right| \leq \delta^{-O(1)}\left|A^{\prime}\right|
$$

$\left(A^{\prime}-A^{\prime}:=\left\{a-a^{\prime}: a, a^{\prime} \in A^{\prime}\right\}.\right)$

- Eliminates the third structure-type.
- Polynomial bounds.
- Proof (Gowers) by dependent random choice.

De-coupling the argument: step 2

Easy: d-dimensional convex coset progression M has relative polynomial growth meaning

$$
|n M| \leq n^{O(d)}|M| \text { for all } n \geq 1
$$

De-coupling the argument: step 2

Easy: d-dimensional convex coset progression M has relative polynomial growth meaning

$$
|n M| \leq n^{O(d)}|M| \text { for all } n \geq 1
$$

Green and Ruzsa: this is essentially an equivalence.

De-coupling the argument: step 2

Easy: d-dimensional convex coset progression M has relative polynomial growth meaning

$$
|n M| \leq n^{O(d)}|M| \text { for all } n \geq 1 .
$$

Green and Ruzsa: this is essentially an equivalence.
Convex coset progressions and relative polynomial growth
Suppose $|n X| \leq n^{d}|X|$ for all $n \geq 1$. Then X 'is' a $d^{1+o(1)}$-dimensional convex coset progression.

De-coupling the argument: step 2

Easy: d-dimensional convex coset progression M has relative polynomial growth meaning

$$
|n M| \leq n^{O(d)}|M| \text { for all } n \geq 1 .
$$

Green and Ruzsa: this is essentially an equivalence.
Convex coset progressions and relative polynomial growth
Suppose $|n X| \leq n^{d}|X|$ for all $n \geq 1$. Then X 'is' a $d^{1+o(1)}$-dimensional convex coset progression.

- Proof via harmonic analysis and geometry of numbers.

Decoupling the argument: step 3

Aim

Show that if $|A-A| \leq K|A|$ then there is some X such that

- $|A \cap X| \geq \exp \left(-d^{\prime}(K)\right)|A|$;
- $|A \cap X| \geq \exp \left(-d^{\prime}(K)\right)|X|$;
- and $|n X| \leq n^{d^{\prime}(K)}|X|$ for all $n \geq 1$.

Decoupling the argument: step 3

Aim

Show that if $|A-A| \leq K|A|$ then there is some X such that

- $|A \cap X| \geq \exp \left(-d^{\prime}(K)\right)|A|$;
- $|A \cap X| \geq \exp \left(-d^{\prime}(K)\right)|X|$;
- and $|n X| \leq n^{d^{\prime}(K)}|X|$ for all $n \geq 1$.
- Leads to Freĭman's theorem with $d(\delta)=d^{\prime}\left(\delta^{-O(1)}\right)$.

Achieving our aim

Suppose $|A-A| \leq K|A|$. Can still have the first two structure-types from before.

Achieving our aim

Suppose $|A-A| \leq K|A|$. Can still have the first two structure-types from before.

- A is chosen randomly in a subgroup of G;

Achieving our aim

Suppose $|A-A| \leq K|A|$. Can still have the first two structure-types from before.

- A is chosen randomly in a subgroup of G;
- A is a union of independent cosets of a subgroup of G.

Achieving our aim

Suppose $|A-A| \leq K|A|$. Can still have the first two structure-types from before.

- A is chosen randomly in a subgroup of G;
- A is a union of independent cosets of a subgroup of G.

Argument has two main ideas.

López-Ross

Write $f * \mu_{A}(x)$ for the average value of f on the set $x-A$.

López-Ross

Write $f * \mu_{A}(x)$ for the average value of f on the set $x-A$.
López and Ross
If $x \in A$ then average value of 1_{A-A} on $x-A$ is 1 , so

$$
\left\langle 1_{A-A} * \mu_{A}, 1_{A}\right\rangle=1
$$

Croot-Sisask

Croot-Sisask

If $|A-A| \leq K|A|$ then there is X large such that

$$
\left(\sum_{y \in G}\left|f * \mu_{A}(y+x)-f * \mu_{A}(y)\right|^{p}\right)^{1 / p} \leq \epsilon\left(\sum_{y \in G}|f(y)|^{p}\right)^{1 / p}
$$

for all $x \in X$.

Croot-Sisask

Croot-Sisask

If $|A-A| \leq K|A|$ then there is X large such that

$$
\left(\sum_{y \in G}\left|f * \mu_{A}(y+x)-f * \mu_{A}(y)\right|^{p}\right)^{1 / p} \leq \epsilon\left(\sum_{y \in G}|f(y)|^{p}\right)^{1 / p}
$$

for all $x \in X$.
In words: $f * \mu_{\mathrm{A}}$ does not vary much in ℓ^{p} when translating by elements of X.

Combining the ingredients

We get X large such that

$$
\left\langle 1_{A-A} * \mu_{A} * \mu_{X}, 1_{A}\right\rangle \geq 1 / 2
$$

Combining the ingredients

We get X large such that

$$
\left\langle 1_{A-A} * \mu_{A} * \mu_{X}, 1_{A}\right\rangle \geq 1 / 2
$$

and $k \in \mathbb{N}$ such that

$$
|k X| \leq \exp \left(-O_{K}\left(k^{2 / 3}\right)\right)|X|
$$

Combining the ingredients

We get X large such that

$$
\left\langle 1_{A-A} * \mu_{A} * \mu_{X}, 1_{A}\right\rangle \geq 1 / 2
$$

and $k \in \mathbb{N}$ such that

$$
|k X| \leq \exp \left(-O_{K}\left(k^{2 / 3}\right)\right)|X|
$$

The first condition leads to

- $|A \cap X|=\Omega_{K}(|A|)$;
- and $|A \cap X|=\Omega(|X| / K)$.

Combining the ingredients

We get X large such that

$$
\left\langle 1_{A-A} * \mu_{A} * \mu_{X}, 1_{A}\right\rangle \geq 1 / 2
$$

and $k \in \mathbb{N}$ such that

$$
|k X| \leq \exp \left(-O_{K}\left(k^{2 / 3}\right)\right)|X|
$$

The first condition leads to

- $|A \cap X|=\Omega_{K}(|A|)$;
- and $|A \cap X|=\Omega(|X| / K)$.

The second gives the relative polynomial growth.

