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The 99% question

Aim

Find a useful approximate version of subgroup.

G is an Abelian group throughout.

Characterisation of cosets

A ⊂ G is a coset (of a subgroup) in G iff A 6= ∅ and

x , y , z ∈ A⇒ x + y − z ∈ A.

Rough question

What if only 99% of triples x , y , z ∈ A have x + y − z ∈ A?
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The 99% question

Formally put

E (A) := #{(x , y , z) ∈ A3 : x + y − z ∈ A}.

Called additive energy of A.

Question

Which sets A ⊂ G have E (A) ≥ (1− ε)|A|3?

Easy: E (A) ≤ |A|3.

Before: A ⊂ G is a coset in G iff E (A) = |A|3.

Think of A finite, |A| → ∞ and ε . 1/100.
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Examples for the 99% question

Example

H is a coset in G and A has

|A ∩ H| ≥ (1− η)|A|;
and |A ∩ H| ≥ (1− η)|H|.

Short calculation:

E (A) ≥ (1− O(η))|A|3.
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The 99% theorem

Proposition

Suppose that E (A) ≥ (1− ε)|A|3. Then there is some coset H in
G such that

|A ∩ H| ≥ (1− O(ε1/2))|A|;
and |A ∩ H| ≥ (1− O(ε1/2))|H|.

Weakness: these approximate groups are all close to actual
groups.
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The 1% question

New question

Which sets A ⊂ G have E (A) ≥ δ|A|3?

Think of A finite, |A| → ∞ and δ = Ω(1).

Idea for examples: Q a convex body in Rd e.g. a cube. Then

P(x + y − z ∈ Q|x , y , z ∈ Q) ≥ exp(−O(d)).

In some sense ‘E (Q) ≥ exp(−O(d))|Q|3’.
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Examples for the 1% question

Convex progressions

A d-dimensional convex progression in G is a set of the form
φ(Q ∩ Zd) where

Q is a symmetric convex body in Rd ;

and φ : Zd → G is a homomorphism.

Convex coset progressions

A d-dimensional convex coset progression in G is then a set H + P
where

P is a d-dimensional convex progression;

and H is a coset in G .
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Examples for the 1% question

Example

M is a convex coset progression and A is any set such that

|A ∩M| ≥ exp(−d)|A|;
|A ∩M| ≥ exp(−d)|M|;
and dim M ≤ d .

Short calculation:

E (A) ≥ exp(−O(d))|A|3.
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The 1% theorem: Frĕıman’s theorem

Theorem

Suppose that E (A) ≥ δ|A|3. Then there is a convex coset
progression M such that

|A ∩M| ≥ exp(−d(δ))|A|;
|A ∩M| ≥ exp(−d(δ))|M|;
and dim M ≤ d(δ).

Balog and Szemerédi;

G torsion-free, Frĕıman;

G bounded exponent, Ruzsa;

G arbitrary (Abelian) Green and Ruzsa.
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Why do we care?

Result is useful: empirically true with numerous applications
following Gowers.

Hypothesis easily satisfied: convex coset progressions are
ubiquitous. (Contrasts with subgroups e.g. G = Z/pZ.)

Output useful: convex coset progressions support (rough)
harmonic analysis.

Rough equivalence: any set satisfying the conclusion also
satisfies the hypothesis with δ replaced by exp(−O(d(δ))).
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Quality of the rough equivalence in Frĕıman’s theorem

Theorem

Suppose that E (A) ≥ δ|A|3. Then there is a convex coset
progression M such that

|A ∩M| ≥ exp(−d(δ))|A|;
|A ∩M| ≥ exp(−d(δ))|M|;
and dim M ≤ d(δ).

Green and Ruzsa: d(δ) = δ−O(1).

Schoen (breakthrough): d(δ) = exp(O(
√

log δ−1)) = δ−o(1).

S.: d(δ) = logO(1) δ−1.

Polynomial-Frĕıman-Ruzsa conjecture: d(δ) = O(log δ−1).

Tom Sanders Approximate (Abelian) groups



Quality of the rough equivalence in Frĕıman’s theorem
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Theorem

Suppose that E (A) ≥ δ|A|3. Then there is a convex coset
progression M such that

|A ∩M| ≥ exp(−d(δ))|A|;
|A ∩M| ≥ exp(−d(δ))|M|;
and dim M ≤ d(δ).

Green and Ruzsa: d(δ) = δ−O(1).

Schoen (breakthrough): d(δ) = exp(O(
√

log δ−1)) = δ−o(1).

S.: d(δ) = logO(1) δ−1.

Polynomial-Frĕıman-Ruzsa conjecture: d(δ) = O(log δ−1).

Tom Sanders Approximate (Abelian) groups



Quality of the rough equivalence in Frĕıman’s theorem
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The obstacles

(Random sets) H ≤ G . A ⊂ H is chosen randomly with
density δ. Then E (A) ≈ δ|A|3 (w.h.p.)

(Independent copies of same subgroup) H ≤ G . k ∼ δ−1 and
{xi + H}ki=1 is independent in G/H. A =

⋃k
i=1 (xi + H) has

E (A) ≈ δ|A|3.

(Independent copies of different subgroups) k ∼ δ−1/2 and
H1, . . . , Hk are ‘totally different’ subgroups of same size.
A =

⋃k
i=1 Hi has E (A) ≈ δ|A|3.

Argument de-couples into three parts.
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De-coupling the argument: step 1

Balog-Szemerédi-Gowers lemma

Suppose E (A) ≥ δ|A|3. Then there is A′ ⊂ A with

|A′| ≥ δO(1)|A| and |A′ − A′| ≤ δ−O(1)|A′|.

(A′ − A′ := {a− a′ : a, a′ ∈ A′}.)

Eliminates the third structure-type.

Polynomial bounds.

Proof (Gowers) by dependent random choice.
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De-coupling the argument: step 2

Easy: d-dimensional convex coset progression M has relative
polynomial growth meaning

|nM| ≤ nO(d)|M| for all n ≥ 1.

Green and Ruzsa: this is essentially an equivalence.

Convex coset progressions and relative polynomial growth

Suppose |nX | ≤ nd |X | for all n ≥ 1. Then X ‘is’ a
d1+o(1)-dimensional convex coset progression.

Proof via harmonic analysis and geometry of numbers.
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Decoupling the argument: step 3

Aim

Show that if |A− A| ≤ K |A| then there is some X such that

|A ∩ X | ≥ exp(−d ′(K ))|A|;
|A ∩ X | ≥ exp(−d ′(K ))|X |;
and |nX | ≤ nd ′(K)|X | for all n ≥ 1.

Leads to Frĕıman’s theorem with d(δ) = d ′(δ−O(1)).
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Achieving our aim

Suppose |A− A| ≤ K |A|. Can still have the first two
structure-types from before.

A is chosen randomly in a subgroup of G ;

A is a union of independent cosets of a subgroup of G .

Argument has two main ideas.
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López-Ross

Write f ∗ µA(x) for the average value of f on the set x − A.

López and Ross

If x ∈ A then average value of 1A−A on x − A is 1, so

〈1A−A ∗ µA, 1A〉 = 1.
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Croot-Sisask

Croot-Sisask

If |A− A| ≤ K |A| then there is X large such that∑
y∈G
|f ∗ µA(y + x)− f ∗ µA(y)|p

1/p

≤ ε

∑
y∈G
|f (y)|p

1/p

for all x ∈ X .

In words: f ∗ µA does not vary much in `p when translating by
elements of X .
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Combining the ingredients

We get X large such that

〈1A−A ∗ µA ∗ µX , 1A〉 ≥ 1/2

and k ∈ N such that

|kX | ≤ exp(−OK (k2/3))|X |.

The first condition leads to

|A ∩ X | = ΩK (|A|);

and |A ∩ X | = Ω(|X |/K ).

The second gives the relative polynomial growth.
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