
shape of Young diagrams

characters

Combinatorics of asymptotic representation theory

Piotr Śniady

Polish Academy of Sciences
and
University of Wrocław

Gaussian fluctuations

representations

shape of Young diagrams

characters $\overbrace{C_{h_{5}}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$
maps

Gaussian fluctuations

open problems

representations 1

representation theory: how an abstract group can be concretely realized as a group of matrices?

Example

symmetric group $\mathfrak{S}(3)$ permutations of $\{1,2,3\}$

formal definition: representation ρ of a group G is a homomorphism

$$
\rho: G \rightarrow M_{k}
$$

from the group to invertible matrices

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes,
element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations 2

Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$
this is a bijection
revert the optics:
representation of the alternating group $\mathfrak{A}(5)$

representations

shape of Young diagrams

characters $\overbrace{\mathrm{Ch}_{5}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$
maps

Gaussian fluctuations

open problems

irreducible representations

representation ρ is called reducible if can be written as a direct sum of smaller representations:

$$
\rho(g)=\left[\begin{array}{ll}
\rho_{1}(g) & \\
& \rho_{2}(g)
\end{array}\right] \quad \text { for every } g \in G ;
$$

we are interested in irreducible representations
irreducible representation $\rho^{\lambda} \quad \longleftrightarrow$ Young diagram λ with n boxes of the symmetric group $\mathfrak{S}(n)$

shape of Young diagram

Young diagram λ

dilated diagram 2λ
goal for today:
study $\rho^{s \lambda}$ for $s \rightarrow \infty$

homogeneous functions

Young diagram λ

dilated diagram 2λ

homogeneous functions

Young diagram λ

dilated diagram 2λ
we need nice functions on the set of Young diagrams which depend only on shape of λ, not on its size:

$$
f(s \lambda)=f(\lambda)
$$

homogeneous functions

Young diagram λ

dilated diagram 2λ
we need nice functions on the set of Young diagrams which

homogeneous functions

Young diagram λ

dilated diagram 2λ
we need nice functions on the set of Young diagrams which

homogeneous functions

Young diagram λ

dilated diagram 2λ
we need nice functions on the set of Young diagrams which depend nicely on the size of λ :

$$
f(s \lambda)=s^{k} f(\lambda)
$$

homogeneous function of degree k

representations

shape of Young diagrams

characters $\overbrace{\mathrm{Ch}_{5}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$
maps

Gaussian fluctuations

open problems

character \longleftrightarrow shape

for irreducible representation

$$
\rho^{\lambda}(\pi) \in M_{k} \quad \text { for } \pi \in \mathfrak{S}(n)
$$

we define irreducible character

$$
\chi^{\lambda}(\pi):=\operatorname{Tr} \rho^{\lambda}(\pi) \quad \text { for } \pi \in \mathfrak{S}(n)
$$

classical combinatorics:
Murnaghan-Nakayama rule

$$
\begin{aligned}
& \pi=(2,7,9)(1,10,8,3)(4,6,5)=3 \cdot 4 \cdot 3 \\
& \chi^{\lambda}(\pi)=(-1)^{0} \cdot(-1)^{1} \cdot(-1)^{1}+\cdots
\end{aligned}
$$

representations

shape of Young diagrams

characters $\overbrace{C_{h_{5}}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$

open problems

dual combinatorics of the representation theory of $\mathfrak{S}(n)$

classical combinatorics
λ is fixed
character $\chi^{\lambda}(\pi)$ function of π

dual combinatorics

 conjugacy class is fixed character $\mathrm{Ch}_{k}(\lambda)$ function of λ
normalized character:
\rightarrow Kerov \& Olshanski

$$
\mathrm{Ch}_{5}(\lambda):=\underbrace{n(n-1) \cdots(n-4)}_{5 \text { factors }} \frac{\operatorname{Tr} \rho^{\lambda}([5])}{\operatorname{Tr} \rho^{\lambda}(e)}, \quad \begin{gathered}
n \text { - the number } \\
\text { of boxes of } \lambda
\end{gathered}
$$

representations

shape of Young diagrams

characters $\overbrace{C_{h_{5}}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$

open problems

free cumulants \longleftrightarrow shape

\rightarrow Biane,
using random matrix theory / Voiculescu's free probability, Speicher's free cumulants and non-crossing partitions

free cumulants

$s \mapsto \mathrm{Ch}_{k}(s \lambda) \quad$ is a polynomial of degree $k+1$
free cumulants $R_{2}(\lambda), R_{3}(\lambda), \ldots$ are top-degree coefficients:

$$
R_{k+1}(\lambda):=\lim _{s \rightarrow \infty} \frac{1}{s^{k+1}} \mathrm{Ch}_{k}(s \lambda)
$$

free cumulant R_{k} is homogeneous with degree k :

$$
R_{k}(s \lambda)=s^{k} R_{k}(\lambda)
$$

$$
R_{k+1} \approx \mathrm{Ch}_{k}
$$

representations

shape of Young diagrams

characters $\overbrace{C_{h_{5}}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$

open problems

Kerov polynomials

$$
\begin{aligned}
\overbrace{\mathrm{Ch}_{2}}^{\text {character }} & =\overbrace{R_{3}}^{\text {shape }} \\
\mathrm{Ch}_{3} & =R_{4}+R_{2}, \\
\mathrm{Ch}_{4} & =R_{5}+5 R_{3}, \\
\mathrm{Ch}_{5} & =R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}, \\
\mathrm{Ch}_{6} & =R_{7}+35 R_{5}+35 R_{3} R_{2}+84 R_{3}
\end{aligned}
$$

Kerov positivity conjecture:
the coefficients are non-negative integers;
what is their combinatorial meaning?

representations

shape of Young diagrams

characters $\overbrace{\mathrm{Ch}_{5}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$

open problems

maps

map

- is a graph drawn on an oriented surface,
- bipartite,
- with one face,
- labeled,
- connected

what Kerov polynomials count?

coefficient of $R_{i_{1}} \cdots R_{i_{\ell}}$ in Ch_{k} counts the number of maps with k edges
with black vertices labelled by $R_{i_{1}}, \ldots, R_{i_{\ell}}$,
each black vertex R_{i} produces $i-1$ units of liquid,
each white vertex demands 1 unit of the liquid,
each edge transports strictly

\rightarrow Féray, Doeęga \& Śniady positive amout of liquid from black to white vertex

embedding of a map to a Young diagram

\rightarrow Stanley, Féray, Śniady

$N_{M}(\lambda)=\#$ embeddings of M to λ
$N_{M}(\lambda)$ is a homogeneous function,

$$
\operatorname{deg} N_{M}=k-1+\chi(M)=k+1-2 \operatorname{genus}(M)
$$

biggest contribution: planar maps

Stanley's character formula

\rightarrow Stanley, Féray, Śniady

$N_{M}(\lambda)=\#$ embeddings of M to λ

Stanley's character formula

\rightarrow Stanley, Féray, Śniady

$N_{M}(\lambda)=\#$ embeddings of M to λ
$\mathrm{Ch}_{k}(\lambda)=\sum_{M}(-1)^{k-\# \text { white vertices }} N_{M}(\lambda)$,
where the sum runs over maps M with k edges

representations

shape of Young diagrams

characters $\overbrace{\mathrm{Ch}_{5}}^{\text {character }}=\overbrace{R_{6}+15 R_{4}+5 R_{2}^{2}+8 R_{2}}^{\text {shape }}$
maps

Gaussian fluctuations

open problems

characters on two cycles

the normalized character $\mathrm{Ch}_{k, l}(\lambda)$

$$
(1,2, \ldots, k)(k+1, k+2, \ldots, k+I) \in \mathfrak{S}(k+I)
$$

Kerov polynomials

$$
\mathrm{Ch}_{3,2}=R_{3} R_{4}-5 R_{2} R_{3}-6 R_{5}-18 R_{3}
$$

not nice!
(abstract) covariance

$$
\begin{gathered}
\operatorname{Cov}\left(\mathrm{Ch}_{k}, \mathrm{Ch}_{l}\right):=\mathrm{Ch}_{k, I}-\mathrm{Ch}_{k} \mathrm{Ch}_{l} \\
\operatorname{Cov}\left(\mathrm{Ch}_{3}, \mathrm{Ch}_{2}\right)=-\left(6 R_{2} R_{3}+6 R_{5}+18 R_{3}\right)
\end{gathered}
$$

is nice!

surprising cancellations

$$
\begin{aligned}
\mathrm{Ch}_{2} & =\underbrace{R_{3}}_{\text {degree } 3}, \\
\mathrm{Ch}_{3} & =\underbrace{R_{4}}_{\text {degree } 4}+R_{2}, \\
\operatorname{Cov}\left(\mathrm{Ch}_{3}, \mathrm{Ch}_{2}\right) & =-(6 \underbrace{R_{2} R_{3}}_{\text {degree only } 5}+6 \underbrace{R_{5}}_{\text {degree only } 5}+18 R_{3})
\end{aligned}
$$

explanation by Kerov polynomials:
$\operatorname{Cov}\left(\mathrm{Ch}_{3}, \mathrm{Ch}_{2}\right)$ counts connected maps with two cells, such that...

Gaussian fluctuations

(abstract) cumulant

$$
k\left(\mathrm{Ch}_{i_{1}}, \ldots, \mathrm{Ch}_{i_{\ell}}\right)=\mathrm{Ch}_{i_{1}, \ldots, i_{\ell}}-\cdots
$$

surprising cancellation:

$$
\operatorname{deg} k\left(\mathrm{Ch}_{i_{1}}, \ldots, \mathrm{Ch}_{i_{\ell}}\right)=\operatorname{deg} \mathrm{Ch}_{i_{1}}+\cdots+\operatorname{deg} \mathrm{Ch}_{i_{\ell}}-2(\ell-1)
$$

$\mathrm{Ch}_{1}, \mathrm{Ch}_{2}, \mathrm{Ch}_{3}, \ldots$ behave asymptotically as (abstract) Gaussian random variables

Theorem

for a large class of reducible representations of $\mathfrak{S}(n)$, if we randomly select an irreducible component ρ^{λ}, for $n \rightarrow \infty$
λ will concentrate around some limit shape
\rightarrow Biane and the fluctuations are Gaussian
\rightarrow Kerov, Śniady

random Young tableaux 1

random Young tableaux 1

75	81	89	98	100										
58	60	72	94	99										
51	56	62	93	95										
26	38	54	79	92										
18	33	37	59	87										
12	20	35	36	42	46	67	68	70	78	82	84	88	90	97
11	17	19	22	30	43	52	55	64	65	66	74	83	85	96
8	10	13	21	23	29	34	45	47	49	63	71	76	80	91
2	7	9	15	16	24	27	39	41	44	48	57	69	77	86
1	3	4	5	6	14	25	28	31	32	40	50	53	61	73

random Young tableaux 1

75	81	89	98	100		restriction $\rho^{\lambda} \downarrow_{\mathfrak{S}(m)}^{\mathfrak{G}(n)}$ to a subgroup								
58	60	72	94	99										
51	56	62	93	95										
26	38	54	79	92										
18	33	37	59	87										
12	20	35	36	42	46	67	68	70	78	82	84	88	90	97
11	17	19	22	30	43	52	55	64	65	66	74	83	85	96
8	10	13	21	23	29	34	45	47	49	63	71	76	80	91
2	7	9	15	16	24	27	39	41	44	48	57	69	77	86
1	3	4	5	6	14	25	28	31	32	40	50	53	61	73

random Young tableaux 2

representations

shape of Young diagrams

characters

open problems
?

open problems

$$
\begin{aligned}
& \mathrm{Ch}_{6}-R_{7}=\frac{35}{4} C_{5}+42 C_{3}, \\
& \mathrm{Ch}_{7}-R_{8}=14 C_{6}+\frac{469}{3} C_{4}+\frac{203}{3} C_{2}^{2}+180 C_{2} . \\
& \\
& \text { positivity? }
\end{aligned}
$$

$\mathrm{Ch}_{3}^{(\gamma)}=R_{4}+3 \gamma R_{3}+\left(1+2 \gamma^{2}\right) R_{2}$,
$\mathrm{Ch}_{4}^{(\gamma)}=R_{5}+6 \gamma R_{4}+\gamma R_{2}^{2}+\left(5+11 \gamma^{2}\right) R_{3}+\left(7 \gamma+6 \gamma^{3}\right) R_{2}$,
\rightarrow LASSALLE
positivity?

representations

shape of Young diagrams

characters

Gaussian fluctuations

further reading

居 Piotr Śniady
Combinatorics of asymptotic representation theory．
Proceedings of 6th European Congress of Mathematics
arXiv：1203．6509
目 Valentin Féray，Piotr Śniady
Asymptotics of characters of symmetric groups related to Stanley character formula．
Ann．of Math．（2） 173 （2011），no．2，887－906
國 Maciej Dołęga，Valentin Féray，Piotr Śniady
Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations．
Adv．Math． 225 （2010），no．1，81－120

