

representations shape of Young diagrams characters

Combinatorics of asymptotic representation theory

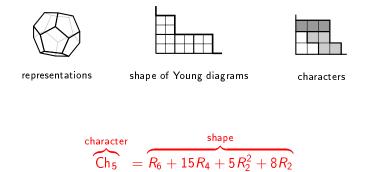
Piotr Śniady

Polish Academy of Sciences and University of Wrocław

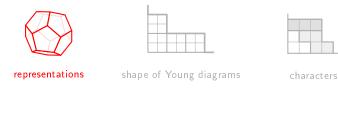
aussian fluctuations

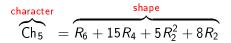
open problems

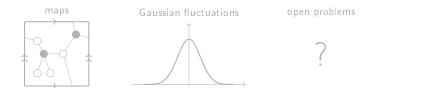
◆ロト ◆昼 ▶ ◆臣 ▶ ◆臣 ▶ ● ○ ○ ○ ○ ○



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ 三臣 … 釣�?

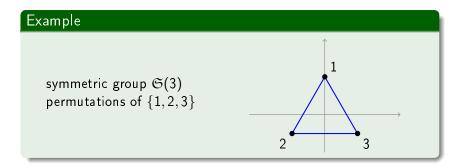






▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

representation theory: how an abstract group can be concretely realized as a group of matrices?



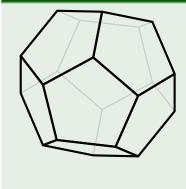
formal definition: representation ρ of a group G is a homomorphism

$$\rho: G \to M_k$$

ション ふゆ アメリア メリア しょうくの

from the group to invertible matrices

Example



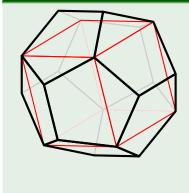
any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example



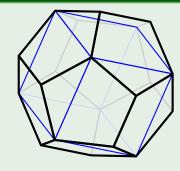
any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Example



any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Example

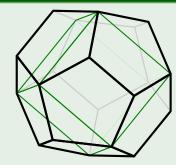
any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Example



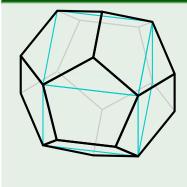
any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

・ロト ・四ト ・ヨト ・ヨト 三日

Example



any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

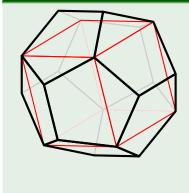
Example

any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

Example

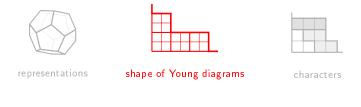


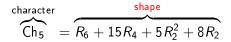
any rotation of the dodecahedron gives an even permutation of the five cubes, element of the alternating group $\mathfrak{A}(5)$

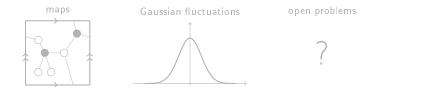
this is a bijection

revert the optics: representation of the alternating group $\mathfrak{A}(5)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●







▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

irreducible representations

representation ρ is called reducible if can be written as a direct sum of smaller representations:

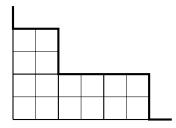
$$ho(g) = egin{bmatrix}
ho_1(g) & \ &
ho_2(g) \end{bmatrix} ext{ for every } g \in {\mathcal G};$$

we are interested in irreducible representations

irreducible representation $\rho^{\lambda} \longleftrightarrow$ Young diagram λ with *n* boxes of the symmetric group $\mathfrak{S}(n)$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

shape of Young diagram



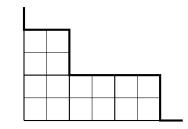
Young diagram λ

dilated diagram 2λ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

goal for today:

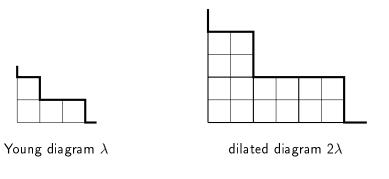
study $\rho^{s\lambda}$ for $s\to\infty$



Young diagram λ

dilated diagram 2λ

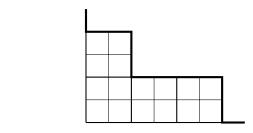
▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

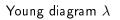


we need *nice* functions on the set of Young diagrams which depend only on shape of λ , not on its size:

 $f(s\lambda) = f(\lambda)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

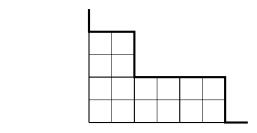


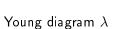


dilated diagram 2λ

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

F/{_bi}/j/#//fi/i/i/

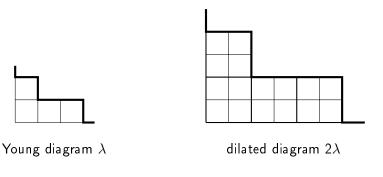




dilated diagram 2λ

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

we need nice functions on the set of Young diagrams which

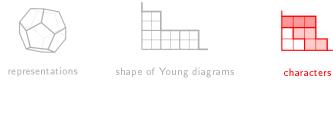


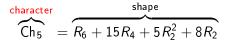
we need *nice* functions on the set of Young diagrams which depend nicely on the size of λ :

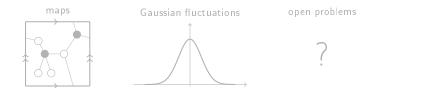
$$f(s\lambda) = s^k f(\lambda)$$

<ロ> (四) (四) (三) (三) (三) (三)

homogeneous function of degree k







▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

character \leftrightarrow shape

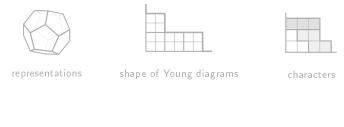
for irreducible representation

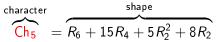
$$\rho^{\lambda}(\pi) \in M_k \quad \text{for } \pi \in \mathfrak{S}(n)$$

we define irreducible character

$$\chi^{\lambda}(\pi) := \operatorname{\mathsf{Tr}}
ho^{\lambda}(\pi) \qquad ext{for } \pi \in \mathfrak{S}(n)$$

classical combinatorics: Murnaghan-Nakayama rule $\pi = (2,7,9)(1,10,8,3)(4,6,5) = 3 \cdot 4 \cdot 3$ $\chi^{\lambda}(\pi) = (-1)^{0} \cdot (-1)^{1} \cdot (-1)^{1} + \cdots$







▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

dual combinatorics of the representation theory of $\mathfrak{S}(n)$

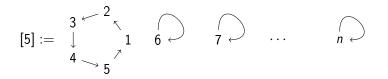
classical combinatorics

 λ is fixed

character $\chi^{\lambda}(\pi)$ function of π dual combinatorics

conjugacy class is fixed

character $\operatorname{Ch}_k(\lambda)$ — function of λ

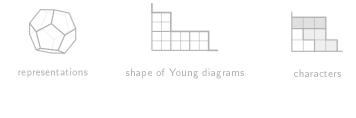


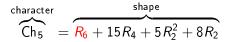
normalized character:

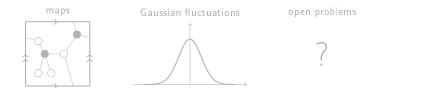
 \rightarrow Kerov & Olshanski

ション ふゆ く 山 マ チャット しょうくしゃ

$$\mathsf{Ch}_{5}(\lambda) := \underbrace{n(n-1)\cdots(n-4)}_{5 \text{ factors}} \frac{\mathsf{Tr}\,\rho^{\lambda}([5])}{\mathsf{Tr}\,\rho^{\lambda}(e)}, \qquad \begin{array}{c} n - \text{ the number} \\ \text{ of boxes of } \lambda \end{array}$$

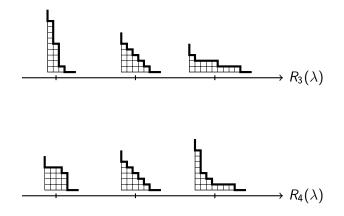






▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

free cumulants \longleftrightarrow shape



 \rightarrow BIANE,

using random matrix theory / VOICULESCU's free probability, SPEICHER's free cumulants and non-crossing partitions

free cumulants

 $s\mapsto {\sf Ch}_k(s\lambda)$ is a polynomial of degree k+1

free cumulants $R_2(\lambda), R_3(\lambda), \ldots$ are top-degree coefficients:

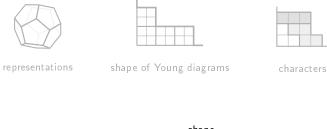
$$R_{k+1}(\lambda) := \lim_{s \to \infty} \frac{1}{s^{k+1}} \operatorname{Ch}_k(s\lambda)$$

free cumulant R_k is homogeneous with degree k:

$$R_k(s\lambda) = s^k R_k(\lambda)$$

 $R_{k+1} \approx \operatorname{Ch}_k$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●





▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

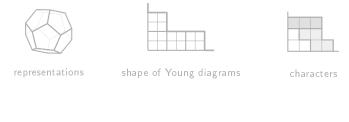
Kerov polynomials

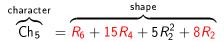
character shape

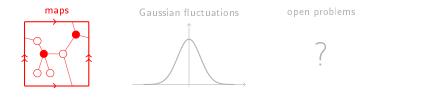
$$\widehat{Ch_2} = \widehat{R_3}$$
,
 $Ch_3 = R_4 + R_2$,
 $Ch_4 = R_5 + 5R_3$,
 $Ch_5 = R_6 + 15R_4 + 5R_2^2 + 8R_2$,
 $Ch_6 = R_7 + 35R_5 + 35R_3R_2 + 84R_3$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Kerov positivity conjecture: the coefficients are non-negative integers; what is their combinatorial meaning?





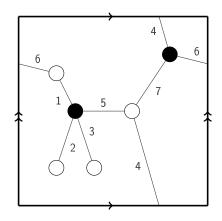


▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

maps

map

- is a graph drawn on an oriented surface,
- bipartite,
- with one face,
- labeled,
- connected



▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

what Kerov polynomials count?

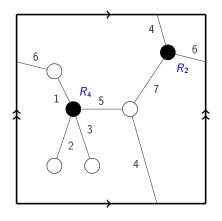
coefficient of $R_{i_1} \cdots R_{i_\ell}$ in Ch_k counts the number of maps with k edges

with black vertices labelled by $R_{i_1}, \ldots, R_{i_\ell}$,

each black vertex R_i produces i-1 units of liquid,

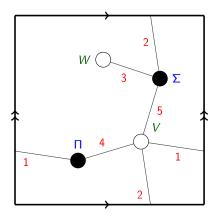
each white vertex demands 1 unit of the liquid,

each edge transports strictly positive amout of liquid from black to white vertex

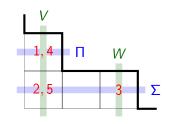


 \rightarrow Féray, Dołęga & Śniady

embedding of a map to a Young diagram



 \rightarrow STANLEY, FÉRAY, ŚNIADY



 $N_M(\lambda) = \#$ embeddings of M to λ

(日) (四) (日) (日)

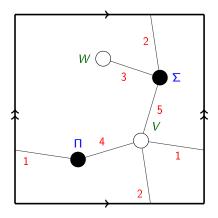
э

 $N_M(\lambda)$ is a homogeneous function,

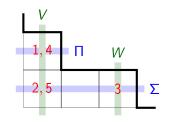
$$\deg N_M = k - 1 + \chi(M) = k + 1 - 2 \operatorname{genus}(M)$$

biggest contribution: planar maps

Stanley's character formula



 \rightarrow Stanley, Féray, Śniady



 $N_M(\lambda) = \#$ embeddings of M to λ

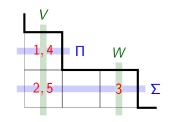
・ロト ・個ト ・モト ・モト

ж

Stanley's character formula



 \rightarrow Stanley, Féray, Śniady



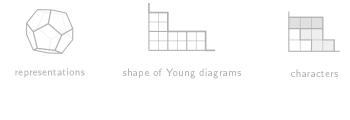
 $N_M(\lambda)=\#$ embeddings of M to λ

(a)

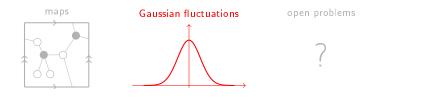
ж

$$\mathsf{Ch}_k(\lambda) = \sum_M (-1)^{k-\#\mathsf{white vertices}} N_M(\lambda),$$

where the sum runs over maps M with k edges







▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

characters on two cycles

the normalized character $Ch_{k,l}(\lambda)$

$$(1,2,\ldots,k)(k+1,k+2,\ldots,k+l)\in\mathfrak{S}(k+l)$$

Kerov polynomials

not nice!

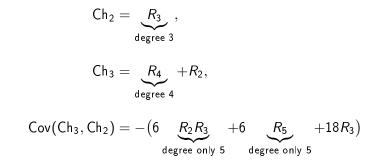
(abstract) covariance

$$Cov(Ch_k, Ch_I) := Ch_{k,I} - Ch_k Ch_I$$
$$Cov(Ch_3, Ch_2) = -(6R_2R_3 + 6R_5 + 18R_3)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

is nice!

surprising cancellations



explanation by Kerov polynomials: Cov(Ch₃, Ch₂) counts connected maps with two cells, such that...

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ の へ ()

Gaussian fluctuations

(abstract) cumulant

$$k(\operatorname{Ch}_{i_1},\ldots,\operatorname{Ch}_{i_\ell})=\operatorname{Ch}_{i_1,\ldots,i_\ell}-\cdots$$

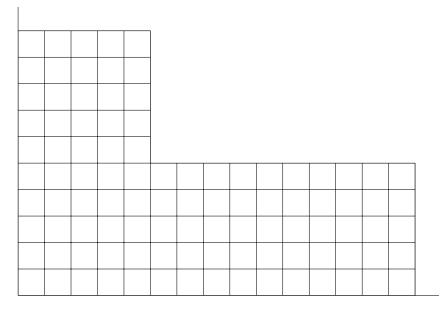
surprising cancellation:

$$\deg k(\operatorname{Ch}_{i_1},\ldots,\operatorname{Ch}_{i_\ell}) = \deg \operatorname{Ch}_{i_1} + \cdots + \deg \operatorname{Ch}_{i_\ell} - 2(\ell-1)$$

 $\mathsf{Ch}_1,\mathsf{Ch}_2,\mathsf{Ch}_3,\ldots$ behave asymptotically as (abstract) Gaussian random variables

Theorem

 $\begin{array}{ll} \text{for a large class of reducible representations of } \mathfrak{S}(n),\\ \text{if we randomly select an irreducible component } \rho^{\lambda}, \text{ for } n \to \infty\\ \lambda \text{ will concentrate around some limit shape} & \to \text{BIANE}\\ \text{and the fluctuations are Gaussian} & \to \text{KEROV}, \text{ $SNIADY} \end{array}$

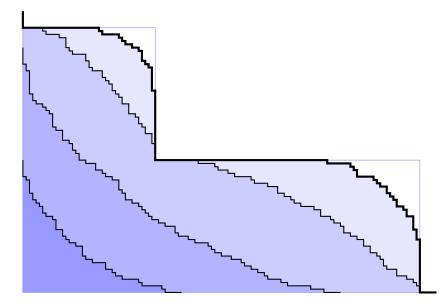


◆□ ▶ < @ ▶ < E ▶ < E ▶ E • 9 < @</p>

75	81	89	98	100										
58	60	72	94	99										
51	56	62	93	95										
26	38	54	79	92										
18	33	37	59	87										
12	20	35	36	42	46	67	68	70	78	82	84	88	90	97
11	17	19	22	30	43	52	55	64	65	66	74	83	85	96
8	10	13	21	23	29	34	45	47	49	63	71	76	80	91
2	7	9	15	16	24	27	39	41	44	48	57	69	77	86
1	3	4	5	6	14	25	28	31	32	40	50	53	61	73

					_											
75	81	89	98	100												
58	60	72	94	99												
51	56	62	93	95	restriction $ ho^\lambdaigert_{\mathfrak{S}(m)}^{\mathfrak{S}(n)}$ to a subgroup											
26	38	54	79	92												
18	33	37	59	87												
12	20	35	36	42	46	67	68	70	78	82	84	88	90	97		
11	17	19	22	30	43	52	55	64	65	66	74	83	85	96		
8	10	13	21	23	29	34	45	47	49	63	71	76	80	91		
2	7	9	15	16	24	27	39	41	44	48	57	69	77	86		
1	3	4	5	6	14	25	28	31	32	40	50	53	61	73		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ◇◇◇

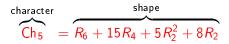


▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

shape of Young diagrams

characters

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで



open problems

$$Ch_{6} - R_{7} = \frac{35}{4}C_{5} + 42C_{3},$$

$$Ch_{7} - R_{8} = 14C_{6} + \frac{469}{3}C_{4} + \frac{203}{3}C_{2}^{2} + 180C_{2}.$$

÷

 \rightarrow Goulden & Rattan

◆□ > < 個 > < E > < E > E 9 < 0</p>

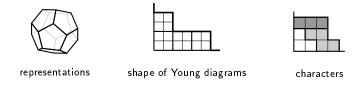
positivity?

:

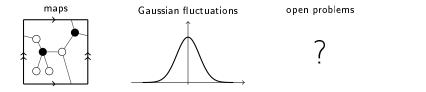
$$Ch_{3}^{(\gamma)} = R_{4} + 3\gamma R_{3} + (1 + 2\gamma^{2})R_{2},$$

 $Ch_{4}^{(\gamma)} = R_{5} + 6\gamma R_{4} + \gamma R_{2}^{2} + (5 + 11\gamma^{2})R_{3} + (7\gamma + 6\gamma^{3})R_{2},$
 $\rightarrow LASSALLE$

positivity?



$$\overbrace{\mathsf{Ch}_5}^{\mathsf{character}} = \overbrace{\mathsf{R}_6 + 15\mathsf{R}_4 + 5\mathsf{R}_2^2 + 8\mathsf{R}_2}^{\mathsf{shape}}$$



▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへぐ

further reading

Piotr Śniady Combinatorics of asymptotic representation theory. Proceedings of 6th European Congress of Mathematics arXiv:1203.6509

📄 Valentin Féray, Piotr Śniady

Asymptotics of characters of symmetric groups related to Stanley character formula. Ann. of Math. (2) 173 (2011), no. 2, 887–906

Maciej Dołęga, Valentin Féray, Piotr Śniady Explicit combinatorial interpretation of Kerov character polynomials as numbers of permutation factorizations. Adv. Math. 225 (2010), no. 1, 81–120