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Overview of talk

I Fundamental Problem: how to bound the supremum of a
collection of random variables (r.v.s) (Xt)t∈T .

I Basic method: Kolmogorov’s chaining

I Kolmogorov’s chaining is optimal for Gaussian processes when
properly used. The chaining takes a few steps of a few lines
each. It took over 50 years to find them.

I An important class of processes is defined by random series of
functions:

Xt =
∑
i≥1

fi (t)ξi ,

where ξi are independent r.v.s. Published bounds on these
processes always use a combination of Kolmogorov’s chaining
and “trivial” bounds.

I Conjectures: There is actually no other way to bound such
random processes.
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Bounding a supremum of r.v.s (Xt)t∈T

Main issue:
I Each r.v. Xt has a small chance to be much larger than its

typical value.
I There are many such variables, and there is a fair chance that

at least one of them is much larger than its typical value.

To quantify the size of supt∈T Xt we consider an arbitrary point t0
of T and the r.v.

Y = sup
t∈T

(Xt − Xt0) ≥ 0.

It is technically convenient that Y ≥ 0 since then

EY =

∫ ∞

0
P(Y ≥ u)du .

The issue is then to bound

P(Y ≥ u) = P
( ⋃

t∈T

{Xt − Xt0 ≥ u}
)

for u > 0.
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The basic idea of chaining

I It is to use the “union bound”

P
(⋃

i

Ai

)
≤

∑
i

P(Ai )

so that

P(Y ≥ u) = P
( ⋃

t∈T

{Xt − Xt0 ≥ u}
)
≤

∑
t∈T

P(Xt − Xt0 ≥ u).

This is terribly ineffective if the r.v.s Xt are nearly identical!
I Remedy: For t ∈ T consider an approximation π1(t) of t,

with π1(t) ∈ T1 ⊂ T and card T1 not too large, and write

Xt − Xt0 = Xt − Xπ1(t) + Xπ1(t) − Xt0 .

• supt∈T (Xt − Xπ1(t)) should be easier to bound than Y
because it consists of smaller r.v.s. since π1(t) is an
approximation of t.
• supt∈T (Xπ1(t) − Xt0) should be easier to bound than Y
because there are not so many different r.v.s Xπ1(t).
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Organizing chaining, I

We iterate the previous method by considering for n ≥ 0 successive
approximations πn(t) ∈ Tn, with π0(t) = t0. Assuming T finite,
we have πn(t) = t for n large enough.
We write the basic chaining identity

Xt − Xt0 =
∑
n≥1

(Xπn(t) − Xπn−1(t)) .

Plan of action: Prove that with probability close to one each
of the differences Xπn(t) − Xπn−1(t) is not too large and therefore
that Y = supt∈T (Xt − Xt0) is not too large.

revised plan of action: Prove that with probability close to
one, for each n, each s ∈ Tn, each s ′ ∈ Tn−1 one can suitably
control the difference Xs − Xs′ and therefore that Y is not too
large.
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Organizing chaining II

Specifically, (following X. Fernique) we try to acheive that with
probability close to 1, for certain numbers c(n, s, s ′),

∀ n ≥ 1 , ∀ s ∈ Tn , ∀ s ′ ∈ Tn−1 , |Xs − Xs′ | ≤ c(n, s, s ′) , (1)

so that then

Xt − Xt0 =
∑
n≥1

(Xπn(t) − Xπn−1(t)) ≤
∑
n≥1

c(n, πn(t), πn−1(t))

and consequently

(1) ⇒ Y = sup
t∈T

(Xt − Xt0) ≤ sup
t∈T

∑
n≥1

c(n, πn(t), πn−1(t))

with the same probability close to 1.
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Chaining for Gaussian processes I

A Gaussian process is such that the family (Xt)t∈T is jointly
Gaussian. Then d(s, s ′) = (E(Xs − Xs′)

2)1/2 is a distance on T .
Basic intuition: the “geometry” of the metric space (T , d)
determines the “size” of the Gaussian process.
The fundamental fact (which reflects the size of the tails of the
Gaussian r.v. Xs − Xs′): If v > 0,

P(|Xs − Xs′ | ≥ v) ≤ 2 exp
(
− v2

2d(s, s ′)2

)
. (2)

The inverse function of exp(x2) is
√

log x . It is then convenient to
impose the condition that

Tn := {πn(t) ; t ∈ T}

satisfies card Tn ≤ 22n
for n ≥ 1. (Note than T0 = {t0}.) Then√

log card Tn grows geometrically.
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Chaining for Gaussian processes II

We want to impose the condition

∀ n ≥ 1 , ∀ s ∈ Tn , ∀ s ′ ∈ Tn−1 , |Xs − Xs′ | ≤ c(n, s, s ′) (1)

for a certain well-chosen c(n, s, s ′).
By the union bound the probability that (1) fails is at most∑

n≥1

∑
s∈Tn,s′∈Tn−1

P(|Xs − Xs′ | > c(n, s, s ′)).

In the next slide we show that a magic choice is

c(n, s, s ′) = v2n/2d(s, s ′) ,

where v > 0 is a parameter.
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Chaining for Gaussian processes III

Now we are going to bound∑
n≥1

∑
s∈Tn,s′∈Tn−1

P(|Xs − Xs′ | > c(n, s, s ′)). (3)

Using the “increment condition” (2) for s and s ′ yields

P(|Xs − Xs′ | > c(n, s, s ′)) ≤ 2 exp
(
−c(n, s, s ′)2

2d(s, s ′)2

)
= 2 exp

(
−(v2n/2d(s, s ′))2

2d(s, s ′)2

)
= 2 exp(−v22n−1).

Now card Tn card Tn−1 ≤
(
22n)2

= 22n+1
. Therefore, the quantity

(3) is at most ∑
n≥1

2 · 22n+1
exp(−v22n−1) ,

and for v ≥ 100 this is ≤ C exp(−v2/2).
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Chaining for Gaussian processes IV
So (1) holds with probability ≥ 1− C exp(−v2/2). Moreover

(1) ⇒ Y = sup
t∈T

(Xt − Xt0) ≤ sup
t∈T

∑
n≥1

c(n, πn(t), πn−1(t))

= v sup
t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t)) .

Since EY =
∫∞
0 P(Y ≥ u)du we obtain

EY = E sup
t∈T

(Xt − Xt0) ≤ C sup
t∈T

∑
n≥1

2n/2d(πn(t), πn−1(t)) . (4)

Since πn(t) ∈ Tn is an approximation of t it is natural require

d(t, πn(t)) = d(t,Tn) = inf{d(t, s) ; s ∈ T} .

Since d(πn(t), πn−1(t)) ≤ d(πn(t), t) + d(t, πn−1(t)), (4) yields

E sup
t∈T

Xt = E sup
t∈T

(Xt − Xt0) ≤ C sup
t∈T

∑
n≥1

2n/2d(t,Tn) .
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The Majorizing Measure Theorem

Since this bound holds for each choice of Tn (with card Tn ≤ 22n
)

we have proved
E sup

t∈T
Xt ≤ Cη(T , d) , (5)

where
η(T , d) := inf sup

t∈T

∑
n≥1

2n/2d(t,Tn) ,

for an infimum over all possible choices of the sets Tn.

((5) is
called the generic chaining bound). How good is this bound?
It is the best possible:

Theorem (The Majorizing measure theorem): For Gaussian
processes,

1

C
η(T , d) ≤ E sup

t∈T
Xt ≤ Cη(T , d) .
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Moral?

The majorizing measure theorem does not tell you how to find the
sets Tn to get a good bound for a Gaussian process. Rather, it
tells you that there is no other way to get a good bound than
finding these sets.
Finding these sets requires understanding the geometry of the
situation.
Still, the “generic chaining” bound completely explains the size of
Gaussian processes.
Now the generic chaining bound is just a clever use of the union
bound.
how far does this go?
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Representation of Gaussian processes as random series

Gaussian processes can always be represented as series
Xt =

∑
i≥1 fi (t)gi , where (gi ) is an i.i.d. standard Gaussian

sequence. Only the set of coefficients matters to understand
supt∈T Xt . Therefore it is natural to consider this set of coefficients
as the parameter. That is we consider processes of the type

Xt =
∑
i≥1

tigi

where the parameter
t = (ti )i≥1

is a sequence and T is a set of such sequences.The canonical
distance on T induced by the process (Xt) is then simply the `2

distance.

The map t 7→ Xt is linear. This has profound
consequences.
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Digression: the hidden power of linearity

Some simple looking facts are mysterious: As a consequence of
linearity,

E sup
t∈T

Xt = E sup
t∈conv T

Xt .

As a consequence of the majorizing measure theorem, one obtain
the following geometrical result about Hilbert space:

η(conv T , d) ≤ Cη(T , d) .

Potentially important problem: find a geometrical proof of this
result.
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Bernoulli Processes

It is natural to consider processes of the type Xt =
∑

i≥1 tiξi

where (ξi )i≥1 are independent r.v.s, and the parameter t = (ti )i≥1

is a sequence of coefficients.

In this case the map t 7→ Xt is linear.

The most important case is where ξi = εi are Bernoulli r.v.s,

P(εi = ±1) =
1

2
.

A Bernoulli process is then a collection of r.v.s Xt =
∑

i≥1 tiεi ,
where the parameter t is a sequence t = (ti )i≥1. They occur in
many circumstances when using symmetrization techniques (e.g in
the study of random Fourier series).
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Two bounds for Bernoulli Processes.
If (gi ) are independent standard Gaussian r.v.s, the generic
chaining bound relies on the inequality

P
(∣∣∣∑

i≥1

tigi

∣∣∣ ≥ v
)
≤ 2 exp

(
− v2

2
∑

i≥1 t2
i

)
.

This inequality remains true if one replace gi by a random sign εi

(The subgaussian inequality). Consequently, since EXt0 = 0, for a
Bernoulli process,

E sup
t∈T

Xt = E sup
t∈T

(Xt − Xt0) ≤ Cη(T , d) ,

where d is the distance induced by `2.

There is a completely different method to bound Bernoulli
processes, namely

|Xt | =
∣∣∣∑
i≥1

tiεi

∣∣∣ ≤ ∑
i≥1

|ti | .
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Interpolation between bounds

Having two different methods to bound a Bernoulli process we can
interpolate between them using linearity, i.e. that Xu+v = Xu + Xv .
For two sets of sequences U and V , let

U + V = {u + v ; u ∈ U, v ∈ V } .

Thus if T ⊂ U + V ,

sup
t∈T

Xt ≤ sup
t∈U+V

Xt ≤ sup
t∈U

Xt + sup
t∈V

Xt

Consequently if T ⊂ U + V ,

E sup
t∈T

Xt ≤ E sup
t∈U

Xt + E sup
t∈V

Xt

≤ Cη(U, d) + sup
v∈V

∑
i≥1

|vi |
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The Bernoulli Conjecture and the $ 5000 prize

If T ⊂ U + V then E supt∈T Xt ≤ Cη(U, d) + supv∈V

∑
i≥1 |vi |,

so that

E sup
t∈T

Xt ≤ inf
T⊂U+V

(
Cη(U, d) + sup

v∈V

∑
i≥1

|vi |
)

.

The Bernoulli Conjecture states that this bound can be reversed:
given T we can find U and V with T ⊂ U + V and

η(U, d) + sup
v∈V

∑
i≥1

|vi | ≤ CE sup
t∈T

Xt .

The prize is for proving this. Difficulty: The decomposition is not
canonical in any way. Caveat: to get the prize you have to solve
the problem before I am too senile to understand the solution.
My thanks to R. Lata la for working on this question (and proving a
beautiful partial result) (Rafal started long before there was a
prize).
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My Conjecture Generator

I Find an nice class of random series Xt =
∑

i≥1 tiξi where ξi

are independent r.v.s, possibly with the same distribution.

I Carefully collect all the methods you can think about to
bound the supremum of a family (Xt)t∈T of such r.v.s

I Think of all the ways you can to interpolate between these
methods.

I Conjecture that the resulting bound is best possible.
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I Conjecture that the resulting bound is best possible.



My Conjecture Generator at work: Positive Selector
Processes

Consider a number 0 < δ � 1 and independent r.v.s ξi ∈ {0, 1}
with

P(ξi = 1) = δ ; P(ξi = 0) = 1− δ .

Try to understand the processes (Xt)t∈T where t = (ti )i≥1, ti ≥ 0.
To bound these:

I Linearity: E supt∈conv T Xt = E supt∈T Xt .

I Positivity: If each element of T is smaller than an element of
S , i.e.

∀ t ∈ T , ∃s ∈ S , ∀ i ≥ 1 , ti ≤ si

Then E supt∈T Xt ≤ E supt∈S Xt .

I Combining the previous: E supt∈solS Xt = E supt∈S Xt where
solS is the solid convex hull of S :

solS = {t ; ∃s ∈ conv S , ∀ i ≥ 1, ti ≤ si} .
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A substitute for chaining for positive selector processes

This is needed because is difficult to use chaining since the tails of
the r.v.s Xt are complicated. We detail a possible use of the union
bound. Define

F(S) = inf
{

A ;

∫ ∞

A

∑
t∈S

P(Xt ≥ u)du ≤ A
}

.

Notice that for A ≥ 0

E sup
t∈S

Xt =

∫ ∞

0
P
(

sup
t∈S

Xt ≥ u
)
du ≤ A +

∫ ∞

A

∑
t∈S

P(Xt ≥ u)du

and thus
E sup

t∈S
Xt ≤ 2F(S).

Note:T ⊂ S 6⇒ F(T ) ≤ F(S)
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Wishful thinking at its best (its worse?)

Consequently, if T ⊂ solS then

E sup
t∈T

Xt ≤ E sup
t∈S

Xt ≤ 2F(S)

Thus
E sup

t∈T
Xt ≤ 2 inf{F(S) ; T ⊂ solS} .

Problem: Can this bound be reversed? i.e given T can one find S
with T ⊂ solS and F(S) ≤ CE supt∈T XT ?

It should be very easy to disprove this! You simply have to invent a
new method to bound these processes. Of course you can then
make a new conjecture....
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Will these problems will ever be solved?

I They are possibly very difficult.They may require a major
effort from very good people.

I At first the payoff appears little.

I Still, arguably they are at a fundamental level

Thank you for your attention.

I hope I soon have to mail this check.
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