The generalized Meixner-Pollaczek polynomials

Anna Tatarczak AnnaTatarczak@poczta.umcs.pl Department of Mathematics, Maria Curie-Skodowska University in Lublin

Abstract

In this work we consider the generalized Meixner-Pollaczek (GMP) polynomials $P_n^{\lambda}(x;\theta,\psi)$ of variable $x\in\mathbb{R}$ and parameters $\lambda>0$, $\theta\in(0,\pi),\psi\in\mathbb{R}$ via the generating function

$$G^{\lambda}(x;\theta,\psi;z) = \frac{1}{(1-ze^{i\theta})^{\lambda-ix}(1-ze^{i\psi})^{\lambda+ix}} = \sum_{n=0}^{\infty} P_n^{\lambda}(x;\theta,\psi)z^n, \quad |z| < 1.$$

We find the three-term recurrence relation, the explicite formula, the - hypergeometric representation, the difference equation and we prove the orthogonality relation for (GMP) polynomials $P^{\lambda}(x; \theta, y)$

orthogonality relation for (GMP) polynomials $P_n^{\lambda}(x;\theta,\psi)$. Moreover, we study the GMP and the special case of $P_n^{\lambda}(x;\theta,\psi)$ corresponding to the choice $\psi = \pi + \theta$ and $\psi = \pi - \theta$, which lead to some interesting families of polynomials. The limiting case $(\lambda \to 0)$ of the sequences of polynomials $P_n^{\lambda}(x;\theta,\pi+\theta)$ is obtained, and is shown to be an orthogonal sequence in the strip, $S = \{z \in \mathbb{C} : |Im(z)| < 1\}.$

AMS Classification: 33C45, 33D45.