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What is control theory?

Objective

Steer a system from an initial configuration to a final configuration.

Optimal control

One tries moreover to minimize a given criterion.

Stabilization

A trajectory being planned, one tries to stabilize it in order to make it robust, insensitive
to perturbations.

Observability

Reconstruct the full state of the system from partial data.
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Application fields are numerous:
Control	  theory	  and	  applica0ons	  

Applica0on	  domains	  of	  control	  theory:	  

Mechanics	  

Vehicles	  (guidance,	  dampers,	  ABS,	  ESP,	  …),	  
Aeronau<cs,	  aerospace	  (shu=le,	  satellites),	  robo<cs	  	  

Electricity,	  electronics	  
RLC	  circuits,	  thermostats,	  regula<on,	  refrigera<on,	  computers,	  internet	  
and	  telecommunica<ons	  in	  general,	  photography	  and	  digital	  video	  

Chemistry	  
Chemical	  kine<cs,	  engineering	  process,	  petroleum,	  dis<lla<on,	  petrochemical	  industry	  

Biology,	  medicine	  

Predator-‐prey	  systems,	  bioreactors,	  epidemiology,	  
medicine	  (peacemakers,	  laser	  surgery)	  	  

Economics	  
Gain	  op<miza<on,	  control	  of	  financial	  flux,	  
Market	  prevision	  
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Here we focus on applications of control theory to problems of
aerospace.
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The orbit transfer problem with low thrust

Controlled Kepler equation

q̈ = −q
µ

r3
+

F
m

q ∈ IR3: position, r = |q|, F : thrust, m mass:

ṁ = −β|F |

Maximal thrust constraint

|F | = (u2
1 + u2

2 + u2
3)1/2 6 Fmax ' 0.1N

Orbit transfer

from an initial excentric inclinated orbit
to a geostationary orbit.
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The orbit transfer problem with low thrust

Controlled Kepler equation

q̈ = −q
µ

r3
+

F
m

q ∈ IR3: position, r = |q|, F : thrust, m mass:

ṁ = −β|F |

Maximal thrust constraint

|F | = (u2
1 + u2

2 + u2
3)1/2 6 Fmax ' 0.1N

Orbit transfer

from an initial excentric inclinated orbit
to a geostationary orbit.

Controllability properties studied in

B. Bonnard, J.-B. Caillau, E. Trélat, Geometric optimal control of elliptic Keplerian orbits, Discrete Contin.
Dyn. Syst. Ser. B 5, 4 (2005), 929–956.

B. Bonnard, L. Faubourg, E. Trélat, Mécanique céleste et contrôle de systèmes spatiaux, Math. & Appl. 51,
Springer Verlag (2006), XIV, 276 pages.
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Modelization in terms of an optimal control problem

State: x(t) =

„
q(t)
q̇(t)

«
Control: u(t) = F (t)

Optimal control problem

ẋ(t) = f (x(t), u(t)), x(t) ∈ IRn, u(t) ∈ Ω ⊂ IRm,

x(0) = x0, x(T ) = x1,

min C(T , u), where C(T , u) =

Z T

0
f 0(x(t), u(t))dt
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Pontryagin Maximum Principle

Optimal control problem

ẋ(t) = f (x(t), u(t)), x(0) = x0 ∈ IRn, u(t) ∈ Ω ⊂ IRm,

x(T ) = x1, min C(T , u), where C(T , u) =

Z T

0
f 0(x(t), u(t))dt .

Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v),

where H(x , p, p0, u) = 〈p, f (x , u)〉+ p0f 0(x , u).

An extremal is said normal whenever p0 6= 0, and abnormal whenever p0 = 0.
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Pontryagin Maximum Principle

H(x , p, p0, u) = 〈p, f (x , u)〉+ p0f 0(x , u).

Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v).

↙
u(t) = u(x(t), p(t))

“
locally, e.g. under the strict Legendre

assumption:
∂2H
∂u2

(x , p, u) negative definite
”
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Pontryagin Maximum Principle

H(x , p, p0, u) = 〈p, f (x , u)〉+ p0f 0(x , u).

Pontryagin Maximum Principle

Every minimizing trajectory x(·) is the projection of an extremal (x(·), p(·), p0, u(·))
solution of

ẋ =
∂H
∂p

, ṗ = −
∂H
∂x

, H(x , p, p0, u) = max
v∈Ω

H(x , p, p0, v).

↖ ↙
u(t) = u(x(t), p(t))

“
locally, e.g. under the strict Legendre

assumption:
∂2H
∂u2

(x , p, u) negative definite
”
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Shooting method:

Extremals (x , p) are solutions of

ẋ =
∂H
∂p

(x , p), x(0) = x0, (x(T ) = x1),

ṗ = −
∂H
∂x

(x , p), p(0) = p0,

where the optimal control maximizes the Hamiltonian.

Exponential mapping

expx0
(t , p0) = x(t , x0, p0),

(extremal flow)

−→ Shooting method: determine p0 s.t. expx0
(t , p0) = x1.

Remark

- PMP = first-order necessary condition for optimality.

- Necessary / sufficient (local) second-order conditions: conjugate points.

→ test if expx0
(t , ·) is an immersion at p0.
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There exist other numerical approaches to solve optimal control problems:

direct methods: discretize the whole problem⇒ finite-dimensional nonlinear
optimization problem with constraints.

Hamilton-Jacobi methods.

The shooting method is called an indirect method.

In the present aerospace applications, the use of shooting methods is priviledged in
general because of their very good numerical accuracy.
BUT: difficult to make converge... (Newton method)

To improve their performances and widen their domain of applicability, optimal control
tools must be combined with other techniques:

geometric tools⇒ geometric optimal control

continuation or homotopy methods

dynamical systems theory
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Orbit transfer, minimal time

Maximum Principle⇒ the extremals (x , p) are solutions of

ẋ =
∂H
∂p

, x(0) = x0, x(T ) = x1, ṗ = −
∂H
∂x

, p(0) = p0,

with an optimal control saturating the constraint: ‖u(t)‖ = Fmax .

−→ Shooting method: determine p0 s.t. x(T ) = x1,

combined with a homotopy on Fmax 7→ p0(Fmax )

Heuristic on tf :

tf (Fmax ) · Fmax ' cste.

(the optimal trajectories are "straight lines",

Bonnard-Caillau 2009)

(Caillau, Gergaud, Haberkorn, Martinon, Noailles, ...)
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Orbit transfer, minimal time

Fmax = 6 Newton P0 = 11625 km, |e0| = 0.75, i0 = 7o , Pf = 42165 km
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Minimal time: 141.6 hours (' 6 days). First conjugate time: 522.07 hours.
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Main tool used: continuation (homotopy) method
→ continuity of the optimal solution with respect to a parameter λ

Theoretical framework (sensitivity analysis):

expx0,λ
(T , p0(λ)) = x1

Local feasibility is ensured:

in the absence of conjugate points.

Global feasibility is ensured:

in the absence of abnormal minimizers.

↓ ↓

Numerical test of Jacobi fields.
this holds true for generic systems having
more than 3 controls
(Chitour-Jean-T, J. Differential Geom., 2006)
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Ongoing work with EADS Astrium:

Minimal consumption transfer for launchers Ariane V and next
Ariane VI (third atmospheric phase, strong thrust)

Objective: automatic and instantaneous software.

continuation on the curvature of the Earth (flat Earth –> round Earth)

M. Cerf, T. Haberkorn, E. Trélat, Continuation from a flat to a round Earth model in the coplanar orbit
transfer problem, Optimal Appl. Cont. Methods (2012).

eclipse constraints→ state constraints, hybrid systems

T. Haberkorn, E. Trélat, Convergence results for smooth regularizations of hybrid nonlinear optimal
control problems, SIAM J. Control Optim. (2011).
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Optimal control
A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

In low orbit

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization
(PhD of Max Cerf, to be defended in 2012)

Ongoing studies, CNES, EADS, NASA
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Optimal control
A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

Around the geostationary orbit

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization
(PhD of Max Cerf, to be defended in 2012)

Ongoing studies, CNES, EADS, NASA

E. Trélat Optimal control and applications to aerospace problems



Introduction Shooting method Orbit transfer Three-body problem

Optimal control
A challenge (urgent!!)

Collecting space debris:

22000 debris of more than 10 cm
(cataloged)

500000 debris between 1 and 10 cm
(not cataloged)

millions of smaller debris

The space garbage collectors

→ difficult mathematical problems combining optimal control,
continuous / discrete / combinatorial optimization
(PhD of Max Cerf, to be defended in 2012)

Ongoing studies, CNES, EADS, NASA
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The circular restricted three-body problem
Dynamics of a body with negligible mass in the gravitational field of two masses m1
and m2 (primaries) having circular orbits:

Equations of motion in the rotating frame

ẍ − 2ẏ =
∂Φ

∂x

ÿ + 2ẋ =
∂Φ

∂y

z̈ =
∂Φ

∂z

with

Φ(x , y , z) =
x2 + y2

2
+

1− µ
r1

+
µ

r2
+
µ(1− µ)

2
,

and
r1 =

q
(x + µ)2 + y2 + z2,

r2 =
q

(x − 1 + µ)2 + y2 + z2.

Main references

American team:
Koon, Lo, Marsden, Ross...

Spanish team:
Gomez, Jorba, Llibre, Masdemont, Simo...
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Lagrange points
Jacobi integral J = 2Φ− (ẋ2 + ẏ2 + ż2) → 5-dimensional energy manifold

Five equilibrium points:

3 collinear equilibrium points: L1, L2, L3 (unstable);

2 equilateral equilibrium points: L4, L5 (stable).

(see Szebehely 1967)

Extension of a Lyapunov theorem (Moser)⇒ same behavior than the linearized
system around Lagrange points.

E. Trélat Optimal control and applications to aerospace problems



Introduction Shooting method Orbit transfer Three-body problem

Lagrange points in the Earth-Sun system

From Moser’s theorem:

L1, L2, L3: unstable.

L4, L5: stable.

E. Trélat Optimal control and applications to aerospace problems
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Lagrange points in the Earth-Moon system

L1, L2, L3: unstable.

L4, L5: stable.

E. Trélat Optimal control and applications to aerospace problems



Introduction Shooting method Orbit transfer Three-body problem

Examples of objects near Lagrange points

Points L4 and L5 (stable) in the
Sun-Jupiter system:
trojan asteroids

E. Trélat Optimal control and applications to aerospace problems
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Examples of objects near Lagrange points

Sun-Earth system:

Point L1: SOHO

Point L2: JWST Point L3: planet X...

E. Trélat Optimal control and applications to aerospace problems
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Periodic orbits

From a Lyapunov-Poincaré theorem, there exist:

a 2-parameter family of periodic orbits around L1, L2, L3

a 3-parameter family of periodic orbits around L4, L5

Among them:

planar orbits called Lyapunov orbits;

3D orbits diffeomorphic to circles called halo orbits;

other 3D orbits with more complicated shape called
Lissajous orbits.

(see Richardson 1980, Gomez Masdemont Simo 1998)

E. Trélat Optimal control and applications to aerospace problems
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Examples of the use of halo orbits:

Orbit of SOHO around L1 Orbit of the probe Genesis (2001–2004)

(requires control by stabilization)
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Invariant manifolds
Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S3 × IR) inside the 5-dimensional energy manifold.
(they play the role of separatrices)

–> invariant "tubes", kinds of "gravity currents"⇒ low-cost trajectories
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Invariant manifolds
Invariant manifolds (stable and unstable) of periodic orbits:
4-dimensional tubes (S3 × IR) inside the 5-dimensional energy manifold.
(they play the role of separatrices)

–> invariant "tubes", kinds of "gravity currents"⇒ low-cost trajectories

Cartography⇒ design of low-cost interplanetary missions
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Meanwhile...

Back to the Moon

⇒ lunar station: intermediate point for interplanetary
missions

Challenge: design low-cost trajectories to the Moon
and flying over all the surface of the Moon.

Mathematics used:
dynamical systems theory, differential geometry,
ergodic theory, control, scientific computing, optimization
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Eight Lissajous orbits
(PhD thesis of G. Archambeau)
Periodic orbits around L1 et L2 (Earth-Moon system) having the shape of an eight:

⇒ Eight-shaped invariant manifolds:

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds of Eight Lissajous orbits
We observe numerically that they enjoy two nice properties:

1) Stability in long time of invariant manifolds

Invariant manifolds of an Eight Lissajous orbit:

→ global structure conserved

Invariant manifolds of a halo orbit:

→ chaotic structure in long time

(numerical validation by computation of local Lyapunov exponents)

E. Trélat Optimal control and applications to aerospace problems
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Invariant manifolds of Eight Lissajous orbits
We observe numerically that they enjoy two nice properties:

2) Flying over almost all the surface of the Moon

Invariant manifolds of an eight-shaped orbit around the
Moon:

oscillations around the Moon

global stability in long time

minimal distance to the Moon:
1500 km.

G. Archambeau, P. Augros, E.T.,
Eight Lissajous orbits in the
Earth-Moon system,
MathS in Action (2011).
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Perspectives

Partnership between EADS Astrium Space Transportation (les Mureaux, France) and
FSMP (Fondation Sciences Mathématiques de Paris):
→ starting next october 2012
→ scientific collaboration with PhD’s, postdocs

Planning low-cost missions to the Moon or interplanetary one, using the gravity
corridors and other gravitational properties

mixed optimization:
interplanetary missions: compromise between low cost and long transfer
time; gravitational effects (swing-by)
optimal conception of space vehicles
collecting space debris
optimal placement problems (vehicle design, sensors)

Inverse problems: reconstructing a thermic, acoustic, electromagnetic
environment (coupling ODE’s / PDE’s)

Robustness problems

...
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Invariant manifolds of eight-shaped Lissajous orbits

Φ(·, t): transition matrix along a reference trajectory x(·)
∆ > 0.

Local Lyapunov exponent

λ(t ,∆) =
1
∆

ln
„

maximal eigenvalue of
q

Φ(t + ∆, t)ΦT (t + ∆, t)
«

Simulations with ∆ = 1 day.
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LLE of an eight-shaped Lissajous orbit:

LLE of an invariant manifold of an eight-shaped
Lissajous orbit:

LLE of an halo orbit:

LLE of an invariant manifold of an halo orbit:
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