ON SUFFICIENT CONDITION FOR STRONGLY STARLIKENESS

JANUSZ SOKÓ£, LUCYNA TROJNAR - SPELINA

Let \mathcal{A} denote the class of functions with the series expansion

$$
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}
$$

in the unit disc $U=\{z:|z|<1\}$. We denote by \mathcal{S} the subclass of \mathcal{A} consisting of univalent functions. A function $f \in \mathcal{S}$ is said to be starlike of order α if

$$
\mathfrak{R e}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(z \in U)
$$

for some $0 \leq \alpha<1$, Robertson [6]. We denote by $\mathcal{S}^{*}(\alpha)$ the class of functions starlike of order α. We say that a function $f \in \mathcal{S}$ is strongly starlike of order β if and only if

$$
\left|\arg \left(\frac{z f^{\prime}(z)}{f(z)}\right)\right|<\frac{\pi}{2} \beta \quad(z \in U)
$$

for some $\beta(0<\beta \leq 1)$. Let $\mathcal{S S}^{*}(\beta)$ denote the class of strongly starlike functions of order β. The class $\mathcal{S S}^{*}(\beta)$ was introduced independently by Stankiewicz [8, 9] and by Brannan and Kirvan [1]. In [10] Takahashi and Nunokawa defined the following subclass of \mathcal{A} :

$$
\mathcal{S}^{*}(\alpha, \beta)=\left\{f \in \mathcal{A}: \frac{-\pi \beta}{2}<\arg \frac{z f^{\prime}(z)}{f(z)}<\frac{\pi \alpha}{2}, z \in U\right\}
$$

for some $0<\alpha \leq 1$, and for some $0<\beta \leq 1$. We recall here the fact, that in [2] and in [3] a similar class was studied. Note that $\mathcal{S S}^{*}(\min \{\alpha, \beta\}) \subset \mathcal{S}^{*}(\alpha, \beta) \subset \mathcal{S S}^{*}(\max \{\alpha, \beta\})$. Of course for $\alpha=\beta$ the class $\mathcal{S}^{*}(\alpha, \beta)$ becomes the class $\mathcal{S S}^{*}(\beta)$. It is easily seen that $\mathcal{S}^{*}(\alpha, \beta) \subset \mathcal{S}^{*}$. In [7] Silverman examined the class \mathcal{G}_{b} of mappings $f \in \mathcal{S}$ that satisfy the condition

$$
\left|\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}}-1\right|<b, z \in U,
$$

for some positive b. In [7] the following inclusion result for the class \mathcal{G}_{b} have been obtained :
Theorem 0.1. [7] If $0<b \leq 1$, then

$$
\mathcal{G}_{b} \subset \mathcal{S}^{*}\left(\frac{2}{1+\sqrt{1+8 b}}\right)
$$

The result is sharp for all b.
In [4] the authors obtained :
Theorem 0.2. [4] If f belongs to the class $\mathcal{G}_{b(\beta)}$ with

$$
b(\beta)=\frac{\beta}{\sqrt{(1-\beta)^{1-\beta}(1+\beta)^{1+\beta}}},
$$

then $f \in \mathcal{S S}^{*}(\beta)$.

Key words and phrases. convex functions; starlike functions; starlike of order α; convex of order α; strongly starlike functions; subordination.

In this work we consider the analogous problem for the classes \mathcal{G}_{b} and $\mathcal{S}^{*}(\alpha, \beta)$. Namely, given α, β we look for possible great b such that $\mathcal{G}_{b} \subset \mathcal{S}^{*}(\alpha, \beta)$.

Our main result is contained in:
Theorem 0.3. Assume that $0<\alpha \leq 1,0<\beta \leq 1$. If $f \in \mathcal{G}_{b(\alpha, \beta)}$ with

$$
b(\alpha, \beta)=\min \left\{\frac{\delta\left(\widetilde{x}_{1}^{1-\delta}-2 \widetilde{x}_{1}^{-\delta} \sin \theta+\widetilde{x}_{1}^{-1-\delta}\right)}{2 \cos \theta}, \frac{\delta\left(\widetilde{x}_{2}^{1-\delta}+2 \widetilde{x}_{2}^{-\delta} \sin \theta+\widetilde{x}_{2}^{-1-\delta}\right)}{2 \cos \theta}\right\}
$$

where

$$
\begin{gathered}
\delta=\frac{\alpha+\beta}{2}, \quad \theta=\frac{\pi}{2}\left(\frac{\alpha-\beta}{\alpha+\beta}\right) \\
\widetilde{x}_{1}=\frac{\sqrt{1-\delta^{2} \cos ^{2} \theta}-\delta \sin \theta}{1-\delta}, \quad \widetilde{x}_{2}=\frac{\sqrt{1-\delta^{2} \cos ^{2} \theta}+\delta \sin \theta}{1-\delta}
\end{gathered}
$$

then $f \in \mathcal{S S}^{*}(\alpha, \beta)$.
If we put $\alpha=\beta$ in the above theorem then we get the following corollary.
Corollary 0.4. Assume that $0<\alpha<1$. If $f \in \mathcal{G}_{b(\alpha)}$ with

$$
b(\alpha)=\frac{\alpha}{2}\left\{\left(\frac{1+\alpha}{1-\alpha}\right)^{\frac{-\alpha-1}{2}}+\left(\frac{1+\alpha}{1-\alpha}\right)^{\frac{-\alpha+1}{2}}\right\}=\frac{\alpha}{\sqrt{(1-\alpha)^{1-\alpha}(1+\alpha)^{1+\alpha}}}
$$

then $f \in \mathcal{S S}^{*}(\alpha)$.
This is the result from Theorem 0.2. Putting $\alpha=\frac{1}{2}$ in Corollary 0.4 we obtain
Corollary 0.5. If

$$
\left|\frac{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}}{\frac{z f^{\prime}(z)}{f(z)}}-1\right|<\frac{\sqrt[4]{3}}{3}, z \in U
$$

then f is strongly starlike of order $\frac{1}{2}$.
Putting $\alpha=3 / 4, \beta=1 / 4$ in Theorem 0.3 we obtain

$$
\delta=\frac{1}{2}, \theta=\frac{\pi}{4}, \widetilde{x}_{1}=\frac{\sqrt{2}(\sqrt{7}-1)}{2}, \widetilde{x}_{2}=\frac{3 \sqrt{2}(\sqrt{7}+1)}{2}
$$

and

$$
b(\alpha, \beta)=\min \left\{\frac{\sqrt[4]{2}(\sqrt{7}-2)}{3 \sqrt{\sqrt{7}+1}}, \frac{\sqrt[4]{2}(\sqrt{7}+5)}{6 \sqrt{\sqrt{7}+1}}\right\}=\frac{\sqrt[4]{2}(\sqrt{7}-2)}{3 \sqrt{\sqrt{7}+1}}
$$

Therefore, we may write the following corollary.
Corollary 0.6. If $f \in \mathcal{G}_{b(\alpha, \beta)}$ with

$$
b(\alpha, \beta)=\frac{\sqrt[4]{2}(\sqrt{7}-2)}{3 \sqrt{\sqrt{7}+1}} \approx 0.134
$$

then $f \in \mathcal{S S}^{*}(3 / 4,1 / 4)$.
Moreover, to obtain the main theorem we prove in this work the following version of the well known Jack's Lemma.
Theorem 0.7. Let p be analytic in U with $p(0)=1$ and $p(z) \neq 0$. If there exist two points $z_{1} \in U$ and $z_{2} \in U$ such that $\left|z_{1}\right|=\left|z_{2}\right|=r$ and for $z \in U_{r}=\{z:|z|<r\}$

$$
-\frac{\pi \beta}{2}=\arg p\left(z_{1}\right)<\arg p(z)<\arg p\left(z_{2}\right)=\frac{\pi \alpha}{2}
$$

with some $0<\alpha \leq 2,0<\beta \leq 2$, then we have

$$
\frac{z_{1} p^{\prime}\left(z_{1}\right)}{p\left(z_{1}\right)}=-i \frac{\alpha+\beta}{2} m_{1}
$$

and

$$
\frac{z_{2} p^{\prime}\left(z_{2}\right)}{p\left(z_{2}\right)}=i \frac{\alpha+\beta}{2} m_{2}
$$

where

$$
m_{1} \geq \frac{1-t}{1+t}, \quad m_{2} \geq \frac{1+t}{1-t}
$$

and where

$$
t=\tan \frac{\pi}{4}\left(\frac{\alpha-\beta}{\alpha+\beta}\right)
$$

References

[1] D. A. Brannan, W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2)1(1969) 431-443.
[2] C. Bucka, K. Ciozda, On a new subclass of the class S, Ann. Polon. Math. 28(1973) 153-161.
[3] C. Bucka, K. Ciozda, Sur une class de fonctions univalentes, Ann. Polon. Math. 28(1973) 233-238.
[4] M. Nunokawa, S. Owa, H. Saitoh, N. Takahashi, On a strongly starlikeness criteria, Bull. Inst. Math. Acad. Sinica, Vol. 31, 3(2003) 195-199.
[5] M. Nunokawa, S. Owa, H. Saitoh, N. Eun Cho, N. Takahashi, Some properties of analytic functions at extremal points for arguments (probably unpublished but cited in [4]).
[6] M. S. Robertson, Certain classes of starlike functions, Michigan Math. J. 76, no.1,(1954) 755-758.
[7] H. Silverman, Convex and starlike criteria, Internat. J. Math. Sci., 22(1999) 75-79.
[8] J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20(1965) 59-75.
[9] J. Stankiewicz, On a family of starlike functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 22-24(1968/70) 175-181.
[10] N. Takahashi, M. Nunokawa, A certain connection between starlike and convex functions, Appl. Math. Lett. 16(2003) 653-655.

Department of Mathematics, Rzeszów University of Technology, al. Powastańców Warszawy 12, 35-959 Rzeszów, Poland

E-mail address: jsokol@prz.edu.pl
E-mail address: lspelina@prz.edu.pl

