ON SUFFICIENT CONDITION FOR STRONGLY STARLIKENESS

JANUSZ SOKÓŁ, LUCYNA TROJNAR - SPELINA

Let \mathcal{A} denote the class of functions with the series expansion

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k,$$

in the unit disc $U = \{z : |z| < 1\}$. We denote by S the subclass of A consisting of univalent functions. A function $f \in S$ is said to be starlike of order α if

$$\Re \operatorname{e} \left\{ \frac{zf'(z)}{f(z)} \right\} > \alpha \quad (z \in U),$$

for some $0 \le \alpha < 1$, Robertson [6]. We denote by $\mathcal{S}^*(\alpha)$ the class of functions starlike of order α . We say that a function $f \in \mathcal{S}$ is strongly starlike of order β if and only if

$$\left| \arg \left(\frac{zf'(z)}{f(z)} \right) \right| < \frac{\pi}{2}\beta \quad (z \in U),$$

for some β (0 < $\beta \le 1$). Let $\mathcal{SS}^*(\beta)$ denote the class of strongly starlike functions of order β . The class $\mathcal{SS}^*(\beta)$ was introduced independently by Stankiewicz [8, 9] and by Brannan and Kirvan [1]. In [10] Takahashi and Nunokawa defined the following subclass of \mathcal{A} :

$$\mathcal{S}^*(\alpha, \beta) = \left\{ f \in \mathcal{A} : \frac{-\pi\beta}{2} < \arg \frac{zf'(z)}{f(z)} < \frac{\pi\alpha}{2}, \ z \in U \right\},\,$$

for some $0 < \alpha \le 1$, and for some $0 < \beta \le 1$. We recall here the fact, that in [2] and in [3] a similar class was studied. Note that $\mathcal{SS}^*(\min\{\alpha,\beta\}) \subset \mathcal{S}^*(\alpha,\beta) \subset \mathcal{SS}^*(\max\{\alpha,\beta\})$. Of course for $\alpha = \beta$ the class $\mathcal{S}^*(\alpha,\beta)$ becomes the class $\mathcal{SS}^*(\beta)$. It is easily seen that $\mathcal{S}^*(\alpha,\beta) \subset \mathcal{S}^*$. In [7] Silverman examined the class \mathcal{G}_b of mappings $f \in \mathcal{S}$ that satisfy the condition

$$\left| \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} - 1 \right| < b, \ z \in U,$$

for some positive b. In [7] the following inclusion result for the class \mathcal{G}_b have been obtained:

Theorem 0.1. [7] If $0 < b \le 1$, then

$$\mathcal{G}_b \subset \mathcal{S}^* \left(\frac{2}{1 + \sqrt{1 + 8b}} \right).$$

The result is sharp for all b.

In [4] the authors obtained:

Theorem 0.2. [4] If f belongs to the class $\mathcal{G}_{b(\beta)}$ with

$$b(\beta) = \frac{\beta}{\sqrt{(1-\beta)^{1-\beta}(1+\beta)^{1+\beta}}},$$

then $f \in \mathcal{SS}^*(\beta)$.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C45.

Key words and phrases. convex functions; starlike functions; starlike of order α ; convex of order α ; strongly starlike functions; subordination .

In this work we consider the analogous problem for the classes \mathcal{G}_b and $\mathcal{S}^*(\alpha, \beta)$. Namely, given α, β we look for possible great b such that $\mathcal{G}_b \subset \mathcal{S}^*(\alpha, \beta)$.

Our main result is contained in:

Theorem 0.3. Assume that $0 < \alpha \le 1$, $0 < \beta \le 1$. If $f \in \mathcal{G}_{b(\alpha,\beta)}$ with

$$b(\alpha, \beta) = \min \left\{ \frac{\delta(\widetilde{x}_1^{1-\delta} - 2\widetilde{x}_1^{-\delta}\sin\theta + \widetilde{x}_1^{-1-\delta})}{2\cos\theta}, \frac{\delta(\widetilde{x}_2^{1-\delta} + 2\widetilde{x}_2^{-\delta}\sin\theta + \widetilde{x}_2^{-1-\delta})}{2\cos\theta} \right\},$$

where

$$\delta = \frac{\alpha + \beta}{2}, \quad \theta = \frac{\pi}{2} \left(\frac{\alpha - \beta}{\alpha + \beta} \right),$$

$$\widetilde{x}_1 = \frac{\sqrt{1 - \delta^2 \cos^2 \theta} - \delta \sin \theta}{1 - \delta}, \quad \widetilde{x}_2 = \frac{\sqrt{1 - \delta^2 \cos^2 \theta} + \delta \sin \theta}{1 - \delta},$$

then $f \in \mathcal{SS}^*(\alpha, \beta)$.

If we put $\alpha = \beta$ in the above theorem then we get the following corollary.

Corollary 0.4. Assume that $0 < \alpha < 1$. If $f \in \mathcal{G}_{b(\alpha)}$ with

$$b(\alpha) = \frac{\alpha}{2} \left\{ \left(\frac{1+\alpha}{1-\alpha} \right)^{\frac{-\alpha-1}{2}} + \left(\frac{1+\alpha}{1-\alpha} \right)^{\frac{-\alpha+1}{2}} \right\} = \frac{\alpha}{\sqrt{(1-\alpha)^{1-\alpha}(1+\alpha)^{1+\alpha}}}$$

then $f \in \mathcal{SS}^*(\alpha)$.

This is the result from Theorem 0.2. Putting $\alpha = \frac{1}{2}$ in Corollary 0.4 we obtain

Corollary 0.5. If

$$\left| \frac{1 + \frac{zf''(z)}{f'(z)}}{\frac{zf'(z)}{f(z)}} - 1 \right| < \frac{\sqrt[4]{3}}{3}, \ z \in U$$

then f is strongly starlike of order $\frac{1}{2}$.

Putting $\alpha = 3/4$, $\beta = 1/4$ in Theorem 0.3 we obtain

$$\delta = \frac{1}{2}, \ \theta = \frac{\pi}{4}, \ \widetilde{x}_1 = \frac{\sqrt{2}(\sqrt{7} - 1)}{2}, \ \widetilde{x}_2 = \frac{3\sqrt{2}(\sqrt{7} + 1)}{2}$$

and

$$b(\alpha, \beta) = \min \left\{ \frac{\sqrt[4]{2}(\sqrt{7} - 2)}{3\sqrt{\sqrt{7} + 1}}, \frac{\sqrt[4]{2}(\sqrt{7} + 5)}{6\sqrt{\sqrt{7} + 1}} \right\} = \frac{\sqrt[4]{2}(\sqrt{7} - 2)}{3\sqrt{\sqrt{7} + 1}}.$$

Therefore, we may write the following corollary.

Corollary 0.6. If $f \in \mathcal{G}_{b(\alpha,\beta)}$ with

$$b(\alpha, \beta) = \frac{\sqrt[4]{2(\sqrt{7} - 2)}}{3\sqrt{\sqrt{7} + 1}} \approx 0.134,$$

then $f \in \mathcal{SS}^*(3/4, 1/4)$.

Moreover, to obtain the main theorem we prove in this work the following version of the well known Jack's Lemma.

Theorem 0.7. Let p be analytic in U with p(0) = 1 and $p(z) \neq 0$. If there exist two points $z_1 \in U$ and $z_2 \in U$ such that $|z_1| = |z_2| = r$ and for $z \in U_r = \{z : |z| < r\}$

$$-\frac{\pi\beta}{2} = \arg p(z_1) < \arg p(z) < \arg p(z_2) = \frac{\pi\alpha}{2},$$

with some $0 < \alpha \le 2$, $0 < \beta \le 2$, then we have

 $\frac{z_1 p'(z_1)}{p(z_1)} = -i \frac{\alpha + \beta}{2} m_1$

and

 $\frac{z_2 p'(z_2)}{p(z_2)} = i \frac{\alpha + \beta}{2} m_2,$

where

 $m_1 \ge \frac{1-t}{1+t}, \quad m_2 \ge \frac{1+t}{1-t},$

and where

$$t = \tan \frac{\pi}{4} \left(\frac{\alpha - \beta}{\alpha + \beta} \right).$$

References

- [1] D. A. Brannan, W. E. Kirwan, On some classes of bounded univalent functions, J. London Math. Soc. (2)1(1969) 431–443.
- [2] C. Bucka, K. Ciozda, On a new subclass of the class S, Ann. Polon. Math. 28(1973) 153–161.
- [3] C. Bucka, K. Ciozda, Sur une class de fonctions univalentes, Ann. Polon. Math. 28(1973) 233–238.
- [4] M. Nunokawa, S. Owa, H. Saitoh, N. Takahashi, On a strongly starlikeness criteria, Bull. Inst. Math. Acad. Sinica, Vol. 31, 3(2003) 195–199.
- [5] M. Nunokawa, S. Owa, H. Saitoh, N. Eun Cho, N. Takahashi, Some properties of analytic functions at extremal points for arguments (probably unpublished but cited in [4]).
- [6] M. S. Robertson, Certain classes of starlike functions, Michigan Math. J. 76, no.1, (1954) 755-758.
- [7] H. Silverman, Convex and starlike criteria, Internat. J. Math. Sci., 22(1999) 75–79.
- [8] J. Stankiewicz, Quelques problèmes extrémaux dans les classes des fonctions α-angulairement étoilées, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 20(1965) 59–75.
- [9] J. Stankiewicz, On a family of starlike functions, Ann. Univ. Mariae Curie-Skłodowska, Sect. A 22-24(1968/70) 175–181.
- [10] N. Takahashi, M. Nunokawa, A certain connection between starlike and convex functions, Appl. Math. Lett. 16(2003) 653–655.

DEPARTMENT OF MATHEMATICS, RZESZÓW UNIVERSITY OF TECHNOLOGY, AL. POWASTAŃCÓW WARSZAWY 12, 35-959 RZESZÓW, POLAND

E-mail address: jsokol@prz.edu.pl E-mail address: lspelina@prz.edu.pl