Combinatorial 2-truncated cubes.

V. Volodin

Abstract

The work is devoted to the family of combinatorial polytopes that can be obtained from a cube by sequence of truncations of codimension 2 faces (below called truncated cubes). Every 2 -truncated cube P is a flag simple polytope and it was shown that there exists a flag simplicial complex Δ_{P} such that $f\left(\Delta_{P}\right)=\gamma(P)$. Therefore, γ-vectors of 2 -truncated cubes satisfy Frankl-Furedi-Kalai inequalities. The class of 2 -truncated cubes include many well-known classes of simple polytopes (flag nestohedra, graph-associahedra and graph-cubeahedra). It was shown that $\gamma-, g_{-}, h$-, f-vectors of associahedra, cyclohedra, permutohedra and stellohedra are the sharp bounds for $\gamma-, g^{-}, h$-, f-vectors of certain subclasses of graphassociahedra.

