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Quasiperiodic motion = quasiperiodic flow{ ẋ1 = ω1
ẋ2 = ω2

(x1, x2) mod 1

ω2
ω1

irrational =⇒ dense trajectories

ω2
ω1

rational =⇒ closed trajectories

Poincare section = rotation by ω2
ω1
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Another way to build quasiperiodic flow

suspension flow = suspension of interval exchange map

two rectangles K1,K2 of sizes u × p and v × q

interval exchange map = rotation by u
u+v
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suspension of interval exchange map = rotation by u
u+v
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rectangles K1,K2 of sizes u × p and v × q
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two translations generate lattice L

L =

{[
v
p

]
,

[
−u

q

]}

isomorphic to Z2

translating rectangles by vectors from the lattice L −→
2-periodic tiling of R2
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tiling generated by rectangles K1,K2 and lattice L
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The torus
T2 = R2/L

natural projection

π : R2 → R2/L = T2

union of the rectangles K1 ∪ K2 = fundamental domain of T2

partition into {K1,K2} is called a bi-partition of T2

union of their horizontal sides Js is called the
horizontal spine,
union of the vertical sides Ju is called the
vertical spine.

Js ∩ Ju = {4 points}
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remodelling of bi-partition (Snavely ’92)
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bi-partition↔ basis (e, f ) in lattice L

e in first quadrant, f in second quadrant

remodelled bi-partition −→ modified basis

family F of such bases of L is called a fan of bases

cutting algorithm −→ cutting sequence of Caroline Series
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cutting algorithm
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cutting algorithm

(en, fn) −→ gn = en + fn

gn is in the right half-plane −→ en+1 = gn, fn+1 = fn

gn is in the left half-plane −→ en+1 = en, fn+1 = gn

backward cutting algorithm
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backward cutting algorithm
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cutting algorithm exausts the fan of bases F

F aquires order of Z

fix (e0, f0) ∈ F

fan F is completely described by cutting sequence {sn}

for n ∈ Z

sn = 0 if en+1 = en, sn = 1 if fn+1 = fn.
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cutting sequence
“data
−→

compression′′
geometric continued fraction

cuttting sequence
. . . 0 0 0 1 1 0 1 1 1 0 . 0 0 0 1 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 1 1 . . .

geometric continued fraction
. . . 3 2 1 3 1 . 3 5 4 1 1 7 . . .

slopes of vertical and horizontal lines in basis (e0, f0)

v
u

= 3 +
1

5 + 1
4+ 1

1+ 1
1+ 1

7+...

q
p

= − 1
1 + 1

3+ 1
1+ 1

2+ 1
3+...
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Theorem (Lagrange)

The continued fraction of

ω = n0 +
1

n1 + 1
n2+

1
n3+...

= [n0; n1,n2,n3, . . . ]

is eventually periodic if and only if there are a,b, c ∈ Z s.t.

a ω2 + b ω + c = 0.

Theorem
The cutting sequence is periodic if and only if the horizontal
and vertical vectors are eigenvectors of an automorphism of the
lattice L.

• very similar to a theorem of Caroline Series
• “theorem proves itself”
• (the group of automorphisms is isomorphic to GL(2,Z))
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Proof in the harder direction

If an automorphism A of the lattice L preserves the horizontal
and vertical lines then it preserves the fan of bases

Fan of bases = F 3 (e, f ) −→ (Ae,Af ) ∈ F

Hence the cutting sequence with respect to the basis (Ae,Af )
is equal to the original and at the same time to the shifted
one.
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bi-partition −→ 2-periodic tiling of R2

−→ 1-dim intersection tilings of R
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1-dim intersection tilings
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consider intersection tilings for all vertical lines
What kind of tilings arise in this way?

they are quasi-periodic (in some sense) = 1-dim quasi-crystals

1-dim tiling −→ infinite word in 2 letters = bi-infinite sequence

bi-infinite sequence ∈ {p,q}Z

these are very special sequences!
= another kind of cutting sequences of Caroline Series

we will give 4 equivalent properties which define these
intersection tilings
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1. Sturmian sequences:

∀n there are exactly n + 1 words of length n

n = 2, (p,q), (q,p), (q,q) =⇒ p is an isolated symbol
(cannot be repeated)

n = 3, (p,q,q), (q,p,q), (q,q,p) and (q,q,q) (or (p,q,p))

2. 2-d sequences:

∀n ∃k s.t. all words of length n contain k or k + 1 of symbols q
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sequence is reducible if one symbol is isolated

reduction = removal of one symbol after each isolated symbol

. . . p q q p q q q p q q q p . . . −→ . . . p q p q q p q q p . . .
−→ . . . p p q p q p . . .

. . . p q q p q q q p q q q p . . .

. . . p q p q q p q q p . . .

. . . p p q p q p . . .

3. characteristic sequences: = infinitely reducible

reduction = remodelling of bi-partition
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4. projection tilings:
horizontal projection of all lattice points
from a vertical strip of width u + v

projection tiling in a strip of arbitrary width
has only tiles of length p,q and p + q

properties 0− 1− 2− 3− 4 are equivalent!
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Symmetries of bi-partitions

symmetry = automorphism A ∈ Aut(T2)
which takes a bi-partition into a remodelled bi-partition

⇔ eigenvectors of A are vertical or horizontal

⇔ periodic cutting sequence

=⇒ 1−dimensional substitution tilings

partition into {K1,K2} is Berg partition for A if
A(Js) ⊂ Js and Ju ⊂ A(Ju)

Berg partition is a special case of a Markov partition, a notion
introduced and developed by Adler-Weiss, Sinai, Bowen
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Markov property excludes the “wrong” intersections of Ki and
A(Kj)
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Berg partition comes with transition matrix M ∈ Gl(2,Z)

M = AT =

[
k m
l n

]
,

Adler, Manning

to obtain a Berg partition translate 0
so that both spines Js and Ju contain fixed points
number of fixed points = |tr A− 1|

Theorem (Siemaszko- W. (2011))
The number of nonequivalent Berg partitions with a given
transition matrix[

k m
l n

]
is equal to

[k+l+m+n
2

]
.
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Berg partition with transition matrix
[

2 1
3 2

]
and substitution

p −→ [p q] p , q −→ [q p] p q p
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New proof based on 1-dim substitution tilings

For a Berg partition the automprphism A−1 takes the
1-dimensional tilings into themselves via constant substitutions

p −→ word with k symbols p and m symbols q

q −→ word with l symbols p and n symbols q

Substitutions in Berg partitions have the
“3 palindromes” property

wol utyl i ma mily tulow
(the ox got fat and it has a nice body)
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“3 palindromes” property: denote k + m = t , l + n = r

1. consider a palindromic word [W ] with t + r − 2 symbols

2. such that its first t − 2 symbols form a palindrome

3. and its first r − 2 symbols also form a palindrome

introduce [lock] = [p,q] or [q,p]

consider a subword of the word [W] [lock] [W]
with t + r symbols containing the lock

it has the structure

[last s symbols of W] [lock] [first t + r − 2− s symbols of W]

split it into consecutive words with t and r symbols
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Example of “3 palindromes” property:[
k m
l n

]
=

[
4 9
3 7

]
3 palindromes of lengths 21,11 and 8

there is only one such palindrome!

q q p q q p q q p q q q p q q p q q p q q
q q p q q p q q p q q
q q p q q p q q

p −→ [p q] q q p q q |p| q q p q q
q −→ [q p] q q p q | q p q q
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Berg partition with transition matrix
[

4 9
3 7

]
and substitution

p −→ [p q] q q p q q |p| q q p q q
q −→ [q p] q q p q | q p q q
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Raphael M. Robinson ’86 Amer.Math.Monthly asked:
∀ relatively prime t , r ∃! palindromic word of length t + r − 2
such that its first t − 2 symbols and the first r − 2 symbols are
palindromes.
solution submitted by Allan Pedersen ’88, and others
de Luca - Mignosi ’94 called it R property in their study of
Sturmian words (42 citations in math.sci.net)
Wen-Wen ’94 proved that subsititutions preserving Sturmian
words are related to automorphisms of the free group with 2
generators F2
Seebold ’98 proved there are exactly k+m+l+n-1 different
substitutions preserving a Sturmian word.
Hellig 2000 proved that substitutions with “3 palindromes”
property are in 1− 1 correspondence with (certain)
automorphisms of F2, the free group with 2 generators.
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solution submitted by Allan Pedersen ’88, and others
de Luca - Mignosi ’94 called it R property in their study of
Sturmian words (42 citations in math.sci.net)
Wen-Wen ’94 proved that subsititutions preserving Sturmian
words are related to automorphisms of the free group with 2
generators F2
Seebold ’98 proved there are exactly k+m+l+n-1 different
substitutions preserving a Sturmian word.
Hellig 2000 proved that substitutions with “3 palindromes”
property are in 1− 1 correspondence with (certain)
automorphisms of F2, the free group with 2 generators.
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