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Motivation

In 1998 V.O. Vakhnenko investigated high-frequency perturbations in a
relaxing barothropic medium. He discovered that this phenomenon is
described by a new nonlinear evolution equation. Later it was proved that
this equation is equivalent to the reduced Ostrovsky equation, which
describes long internal waves in a rotating ocean. The nonlinear
integro-differential Ostrovsky-Vakhnenko equation

ut = −uux − D−1x u (1)

on the real axis R for a smooth function u ∈ C (∞)(R2;R), where D−1x is
the inverse-differential operator to Dx := ∂/∂x , can be derived as a special
case of the Whitham type equation

ut = −uux +

∫
R

K (x , y)uydy . (2)
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Motivation

Recently J.C. Brunelli and S. Sakovich demonstrated that
Ostrovsky-Vakhnenko equation is a suitable reduction of the well known
Camassa-Holm equation that made it possible to construct the
corresponding compatible Poisson structures for (1), but in a complicated
enough non-polynomial form.
In the present work we will reanalyze the integrability of equation (1) both
from the gradient-holonomic, symplectic and formal differential-algebraic
points of view. As a result, we will re-derive the Lax type representation
for the Ostrovsky-Vakhnenko equation (1), construct the related simple
enough compatible polynomial Poisson structures and an infinite hierarchy
of conservation laws.
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Gradient-holonomic integrability analysis

Consider the nonlinear Ostrovsky-Vakhnenko equation (1) as a suitable
nonlinear dynamical system

du/dt = −uux − D−1x u := K [u] (3)

on the smooth 2π-periodic functional manifold

M := {u ∈ C (∞)(R/2πZ;R) :

∫ 2π

0
udx = 0}, (4)

where K : M → T (M) is the corresponding well-defined smooth vector
field on M.
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We state that the dynamical system (3) on manifold M possesses an
infinite hierarchy of conservation laws, that can signify as a necessary
condition for its integrability. For this we need to construct a solution to
the Lax gradient equation

ϕt + K
′,∗
ϕ = 0, (5)

in the special asymptotic form

ϕ = exp[−λt + D−1x σ(x ;λ)], (6)

where, by definition, a linear operator K
′,∗

: T ∗(M)→ T ∗(M) is, adjoint
with respect to the standard convolution (·, ·) on T ∗(M)× T (M), the
Frechet-derivative of a nonlinear mapping K : M → T (M) :

K
′,∗

= uDx + D−1x (7)

and, respectively,

σ(x ;λ) '
∑
j∈Z+

σj [u]λ−j , (8)
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as |λ| → ∞ with some ”local” functionals σj : M → C (∞)(R/2πZ;R) on
M for all j ∈ Z+.
By substituting (6) into (5) one easily obtains the following recurrent
sequence of functional relationships:

σj ,t +
∑
k≤j

σj−k(uσk + D−1x σk,t)− σj+1 + (uσj)x + δj ,0 = 0 (9)

for all j + 1 ∈ Z+ modulo the equation (3). By means of standard
calculations one obtains that this recurrent sequence is solvable and

σ0[u] = 0, σ1[u] = 1, σ2[u] = ux , (10)

σ3[u] = 0, σ4[u] = ut + 2uux ,

σ5[u] = 3/2(u2)xt + utt + 2/3(u3)xx − uxD−1x u

and so on. It is easy check that all of functionals

γj :=

∫ 2π

0
σj [u]dx (11)

are on the manifold M conservation laws, that is dγj/dt = 0 for j ∈ Z+

with respect to the dynamical system (3).
Yarema Prykarpatskyy (University of Agriculture, Krakow)On the integrability of the Ostrovsky-Vakhnenko equation 5 / 18



So we can suggest that the dynamical system (3) on the functional
manifold M is an integrable Hamiltonian system.
We show that this dynamical system is a Hamiltonian flow

du/dt = −ϑ grad H[u] (12)

with respect to some Poisson structure ϑ : T ∗(M)→ T (M) and a
Hamiltonian function H ∈ D(M). Consider the conservation law in the
scalar ”momentum” form:

−1/2γ5 =
1

2

∫ 2π

0
uxD−1x udx = (1/2D−1x u, ux) := (ψ, ux) (13)

with the co-vector ψ := 1/2D−1x u ∈ T ∗(M) and calculate the
corresponding co-Poissonian structure

ϑ−1 := ψ′ − ψ′,∗ = D−1x , (14)

or the Poissonian structure
ϑ = Dx . (15)
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The obtained operator ϑ = Dx : T ∗(M)→ T (M) is really Poissonian for
(3) since the following determining symplectic condition

ψt + K
′,∗
ψ = grad L (16)

holds for the Lagrangian function

L =
1

12

∫ 2π

0
u3dx . (17)

As a result of (16) one obtains easily that

du/dt = −ϑgrad H[u], (18)

where the Hamiltonian function

H = (ψ,K )− L =
1

2

∫ 2π

0
[u3/3− (D−1x u)2/2]dx (19)

is an additional conservation law of the dynamical system (3). Thus, one
can formulate the following proposition.
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Proposition

The Ostrovsky-Vakhnenko dynamical system (3) possesses an infinite
hierarchy of nonlocal, in general, conservation laws (11) and is a
Hamiltonian flow (18) on the manifold M with respect to the Poissonian
structure (15).

It is useful to remark here that the existence of an infinite ordered by
λ-powers hierarchy of conservations laws (11) is a typical property of the
Lax type integrable Hamiltonian systems, which are simultaneously
bi-Hamiltonian flows with respect to corresponding two compatible
Poissonian structures.
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As is well known, the second Poissonian structure η : T ∗(M)→ T (M) on
the manifold M for (3), if it exists, can be calculated as

η−1 := ψ̃′ − ψ̃′,∗, (20)

where a-covector ψ̃ ∈ T ∗(M) is a second solution to the determining
equation (16):

ψ̃t + K
′,∗
ψ̃ = grad L̃ (21)

for some Lagrangian functional L̃ ∈ D(M).
We apply the direct differential-algebraic approach to dynamical system
(3) and reveal its Lax type representation both in the differential scalar
and in canonical matrix Zakharov-Shabat forms. Next, we construct the
naturally related compatible polynomial Poissonian structures for
Ostrovsky -Vakhnenko dynamical system (3) and generate an infinite
hierarchy of commuting to each other nonlocal conservation laws.
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We found the differential Lax type relationships

D3
x f = −µūf , D3

x f̄ = µūf̄ , (22)

and
Dt f = µ−1D2

x f + ux f , Dt f̄ = −µ−1D2
x f̄ − 2ux f̄ , (23)

where ū := uxx + 1/3, µ ∈ C\{0} is an arbitrary complex parameter, hold.
Moreover, they exactly coincide with those found before in [4].
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The obtained above differential relationships (22) and (23) can be
equivalently rewritten in the following matrix Zakharov-Shabat type form:

Dth = q̂[u;µ]h, Dxh = l̂ [u;µ]h, (24)

where matrices

q̂[u;µ] :=

 ux 0 1/µ
−1/3 0 0

0 −1/3 −ux

 , l̂ [u;µ] :=

 0 1 0
0 0 1
−µū 0 0


(25)

and h := (f ,Dx f ,D2
x f )ᵀ ∈ K{u}3.
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Based further on the obtained differential relationships (22) and (23), one
obtains that the following important relationship

−ϑϕ = D2
x Dtϕ = 3µ2ηϕ, (26)

holds, where the polynomial integro-differential operator

η := ∂−1ū∂−3ū∂−1 + 4∂−2ū∂−1ū∂−2 + 2(∂−2ū∂−2ū∂−1 + ∂−1ū∂−2ū∂−2)
(27)

is skewsymmetric on the functional manifold M and presents the second
compatible Poisson structure for the Ostrovsky-Vakhnenko dynamical
system (3).
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Based now on the recurrent relationships following from substitution of the
asymptotic expansion

ϕ '
∑
j∈Z+

ϕjξ
−j , ξ := −1/(3µ2), (28)

into (26), one can determine a new infinite hierarchy of conservations laws
for dynamical system (3):

γ̃j :=

∫ 1

0
ds(ϕj [us], u), (29)

for j ∈ Z+, where
ϕj = Λjϕ0, ϑϕ0 = 0, (30)

and the recursion operator Λ := ϑ−1η : T ∗(M)→ T ∗(M) satisfies the
standard Lax type representation:

Λt = [Λ,K
′∗]. (31)
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Proposition

The Ostrovsky-Vakhnenko dynamical system (3) allows the standard
differential Lax type representation (22), (23) and defines on the
functional manifold M an integrable bi-Hamiltonian flow with compatible
Poisson structures (15) and (27). In particular, this dynamical system
possesses an infinite hierarchy of nonlocal conservation laws (29), defined
by the gradient elements (30).

It is useful to remark here that the existence of an infinite λ-powers ordered
hierarchy of conservations laws (11) is a typical property of the Lax type
integrable Hamiltonian systems, which are simultaneously bi-Hamiltonian
flows with respect to corresponding compatible Poissonian structures.
It is interesting to observe that our second polynomial Poisson structure
(27) differs from that obtained recently in [3], which contains the rational
power factors.
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It is easy to construct making use of the differential expressions (22) and
(23) a slightly different from (24) matrix Lax type representation of the
Zakharov-Shabat form for the dynamical system (1).
Really, if to define the “spectral” parameter µ := 1/(9λ) ∈ C\{0} and
new basis elements of the invariant differential ideal:

g1 := −3Dx f , g2 := f , g3 := 9λD2
x f + ux f , (32)

The relationships (22) and (23) can be rewritten as follows:

Dtg = q[u;λ]g , Dxg = l [u;λ]g , (33)

where matrices

q[u;λ] :=

 0 1 0
0 0 1
λ −u 0

 , l [u;λ] :=

 0 ux/(3λ) −1/(3λ)
−1/3 0 0
−ux/3 −1/3 0


(34)

coincide with those of [4, 3] and satisfy the following Zakharov-Shabat
type compatibility condition:

Dt l = [q, l ] + Dxq − l Dxu. (35)
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Remark As it was already mentioned above, the Lax type representation
(34) of the Ostrovsky-Vakhnenko dynamical system (1) was obtained in
[4] by means of a suitable limiting reduction of the Degasperis-Processi
equation

ut − uxxt + 4uux − 3uxuxx − uuxxx = 0. (36)

For convenience, let us rewrite the latter in the following form:

Dtz = −3zDxu, z = u − D2
x u, (37)

where differentiations Dt := ∂/∂t + u∂/∂x and Dx := ∂/∂x satisfy the
Lie-algebraic relationship [Dx ,Dt ] = uxDx . It appears to be very
impressive that equation (36) is itself a special reduction of a new Lax
type integrable Riemann type hydrodynamic system, proposed and studied
(at s = 2) recently in [6]:

DN−1
t u = z̄s

x , Dt z̄ = 0, (38)

where s, N ∈ N are arbitrary natural numbers.
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Really, having put, by definition, z := z̄s
x and s = 3, from (38) one easily

obtains the following dynamical system:

DN−1
t u = z ,

Dtz = −3zDxu,
(39)

coinciding with the Degasperis-Processi equation (37) if to make the
identification z = u − D2

x u. As a result, we have stated that a function
u ∈ C∞(R2;R), satisfying for an arbitrary N ∈ N the generalized Riemann
type hydrodynamical equation DN−1

t u = u − D2
x u,simultaneously solves

the Degasperis-Processi equation (36). In particular, having put N = 2, we
obtain that solutions to the Burgers type equation Dtu = u − D2

x uare
solving also the Degasperis-Processi equation (36). It means, in particular,
that the reduction procedure of the work [4] can be also applied to the Lax
type integrable Riemann type hydrodynamic system (38), giving rise to a
related Lax type representation for the Ostrovsky-Vakhnenko dynamical
system (1).
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Conclusion

We have showed that the Ostrovsky-Vakhnenko dynamical system is
naturally embedded into the general Lax type integrability scheme [5],
whose main ingredients such as the corresponding compatible Poissonian
structures and Lax type representation can be effectively enough retrieved
by means of direct modern integrability tools, such as the
differential-geometric, differential-algebraic and symplectic gradient
holonomic approaches. We have also demonstrated the relationship of the
Ostrovsky-Vakhnenko equation (1) with a generalize Riemann type
hydrodynamic system, studied recently in [6] and its reduction.
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