

Biharmonic submanifolds $\imath: M^{m} \rightarrow \mathbb{S}^{n}$ - characterization results

Biharmonic submanifolds $\imath: M^{m} \rightarrow \mathbb{R}^{n}$

Chen's Conjecture

Any biharmonic submanifold $\imath: M^{m} \rightarrow \mathbb{R}^{n}$ in the Euclidean space is minimal.

Generalized Chen's conjecture
Any biharmonic submanifold $\imath: M^{m} \rightarrow N^{n}$ Riem $^{N} \leq 0$, is minimal.

- holds when M is complete and \imath is of finite bienergy [NU11]
- there are counterexamples when Riem ${ }^{N}$ is non
constant [OT10]
- still open when Riem ${ }^{N}$ is constant

Biharmonic submanifolds $\imath: M^{m} \rightarrow \mathbb{S}^{n}$ - main examples and classification results

Open Problems

Conjecture 1 . The only proper-biharmonic hypersurfaces in \mathbb{S}^{m+1} are the open parts of hyperspheres $\mathbb{S}^{m}(1 / \sqrt{2})$ or of the standard products of spheres $\mathbb{S}^{m_{1}}(1 / \sqrt{2}) \times \mathbb{S}^{m_{2}}(1 / \sqrt{2}), m_{1}+m_{2}=m, m_{1} \neq m_{2}$
Statements equivalent to Conjecture 1.

- A proper-biharmonic hypersurface in \mathbb{S}^{m+1} has at most two principal curvatures ev erywhere.
- A proper-biharmonic hypersurface in \mathbb{S}^{m+1} is parallel.
- A proper-biharmonic hypersurface in \mathbb{S}^{m+1} is CMC and has non-negative sectiona curvature.
A proper-biharmonic hypersurface in \mathbb{S}^{m+1} is isoparametric
Conjecture 2. The proper-biharmonic hypersurfaces in \mathbb{S}^{m+1} are CMC
Problem. Find a PMC proper-biharmonic submanifold M^{m} in \mathbb{S}^{n} such that A_{H} is not parallel.

Notations and conventions

This poster illustrates the known results on the classification of biharmonic submanifolds in \mathbb{S}^{n}.

- biharmonic submanifold $=$ biharmonic isometric immersio
- proper-biharmonic $=$ biharmonic non-harmonic
- $\Delta^{2}=\Delta \circ \Delta$
- $\Delta=-\operatorname{trace}_{g}\left(\nabla^{\varphi} \nabla^{\varphi}-\nabla_{\nabla}^{\varphi}\right)$ is the rough Laplacian.
- $R^{N}(X, Y)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}$ is the curvature on N.
- B is the second fundamental form of M in \mathbb{S}
- H is the mean curvature vector field of M^{m} in \mathbb{S}^{n}.
- A_{H} is the Weingarten operator of M^{m} associated to H.
- A is the shape operator of M^{m} in \mathbb{S}^{m+1} and $f=\operatorname{trace} A / m$.
- k is the number of distinct principal curvatures of a hypersurface.

References

