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Abstract

Water waves have fascinated scientists and laypersons alike since times
immemorial and their understanding extends beyond intellectual curios-
ity. This research area is a rich source of problems where progress is
contingent upon a fruitful interplay between rigorous mathematical anal-
ysis, numerical simulation, experimental evidence, and physical intuition.
Moreover, in water-wave phenomena nonlinear approaches often describe
more accurately the real nature of the ongoing processes instead of linear
paradigms that usually capture only small perturbations of simple states.

The aim of this talk is to survey recent advances on two fundamental
aspects of water-wave theory:
1. While watching the sea it is often possible to trace a wave as it prop-

agates on the waters surface. Contrary to a possible first impression,
what one observes traveling across the sea is not the water but a
pattern (pulse of energy), as enunciated intuitively in the fifteenth
century by Leonardo da Vinci in the following form: “...it often hap-
pens that the wave flees the place of its creation, while the water does
not; like the waves made in a field of grain by the wind, where we see
the waves running across the field while the grain remains in place.”
A basic question in water waves concerns the flow beneath a surface
wave. Stokes waves are the most regular wave patterns propagating
at constant speed at the surface of water in irrotational flow over a
flat bed. It is widely believed (see, for example, any classical text-
book on water waves) that particles in the water beneath a Stokes
wave execute a closed-path motion as the surface wave passes over:
individual particles of water do not travel along with the wave, but
instead they move in closed, circular or elliptical, orbits. Support for
this conclusion is apparently given by experimental evidence: pho-
tographs of small buoyant particles in laboratory wave tanks where
almost closed elliptical paths are recognizable. The classical approach
towards explaining this aspect of water waves consists in analyzing the
particle motion after linearizing the nonlinear governing equations for
water waves. But even after linearizing the governing equations and
obtaining explicit formulas for the free surface and for the fluid veloc-
ity field, the system describing particle motion turns out to be again
nonlinear. Thus one linearizes again and the closed paths emerge.
However, it turns out that no particle trajectory is closed: over a
wave period, each particle that does not lie on the flat bed performs
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a backward/forward and upward/downward movement, with the path
an elliptical-like loop, not closed but with a forward drift (albeit mostly
small and thus often hard to detect experimentally). On the flat bed
this path degenerates into a back-and-forth horizontal motion. This
fine feature is lost in the process of linearization but can be estab-
lished within the framework of the nonlinear governing equations. The
proof relies on an interplay of methods from harmonic function theory,
dynamical systems and elliptic partial differential equations.

2. Of all the magnificent scenes presented by water waves, breaking
is surely among the most impressive. Although the mathematical
description of the processes of breaking could hardly be regarded
as satisfactory, some theoretical investigations offer insight into this
fundamental aspect of water waves. The complexity of the govern-
ing equations prevent an investigation of breaking waves within this
framework. One is thus led to the derivation of approximations us-
ing simplifying assumptions such as “small amplitude”, “shallow wa-
ter”, “unidirectionality” within certain regimes, rendering mathemat-
ical models of various degrees of sophistication amenable to a more
detailed analysis. The obtained simplified model equations are linear
to the lowest order of approximation but higher-order approximations
incorporate nonlinear effects. These models usually have features
which make them suitable to explain certain observations. Linear the-
ory does not capture the breaking wave phenomenon, nor does the
weakly nonlinear theory of shallow water waves of small amplitude
(the latter being the setting in which an intensive research activity
over the last 30 years led to remarkable success in the understanding
of integrable equations with soliton solutions). Promising recent in-
sight in this direction was provided by studying breaking waves based
on the Camassa-Holm equation which arises as an approximation to
the governing equations for water waves in the shallow water regime
of waves of moderate amplitude. We will discuss this aspect.

Both themes illustrate that an appreciation of mathematical rigor
and elegance, combined with the power of meaningful abstraction, of-
ten leads to breakthroughs in physical insight, while mathematics draws
considerable inspiration and stimulation from physics.
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