

On the discrepancy of some generalized Kakutani's sequences of partitions

Maria Infusino

m.infusino@reading.ac.uk Department of Mathematics and Statistics, University of Reading, UK

1. Introduction

This poster presents some recent results [2] concerning the discrepancy of a class of generalized Kakutani's sequences of partitions of the unit interval, namely sequences constructed by using the technique of successive ρ -refinements. This procedure has been recently introduced by Volčič in [6] and it is an extension of the Kakutani splitting procedure proposed in [4].

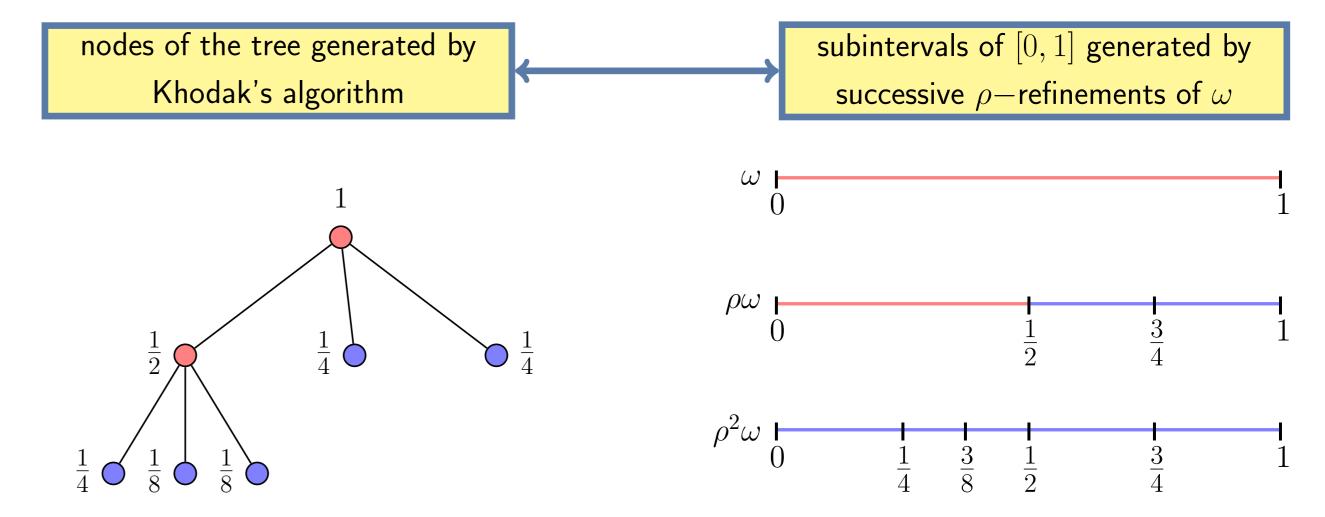
Uniform distribution of sequences of partitions

Let (π_n) be a sequence of partitions of [0, 1] represented by $\pi_n = \{[t_{i-1}^{(n)}, t_i^{(n)}] : 1 \le i \le k(n)\}$, where $0 = t_0^{(n)} < t_1^{(n)} < \cdots < t_{k(n)}^{(n)} = 1$. The sequence (π_n) is said to be **uniformly distributed (u.d.)** if for any continuous function f on [0, 1] we have

$$\lim_{k \to \infty} \frac{1}{k(n)} \sum_{i=1}^{k(n)} f\left(t_i^{(n)}\right) = \int_0^1 f(t) dt$$

5. Idea: Khodak's algorithm $\leftrightarrow \rho$ **-refinements**

Our new approach is based on a parsing tree (related to Khodak's algorithm [5]), which represents the successive ρ -refinements.



Equivalently, (π_n) is u.d. if the sequence of **discrepancies**

$$D_n = \sup_{0 \le a < b \le 1} \left| \frac{1}{k(n)} \sum_{i=1}^{k(n)} \chi_{[a,b[}\left(t_i^{(n)}\right) - (b-a) \right|$$

tends to 0 as $n \to \infty$ ($\chi_{[a,b]}$ denotes the characteristic function of the set [a,b]).

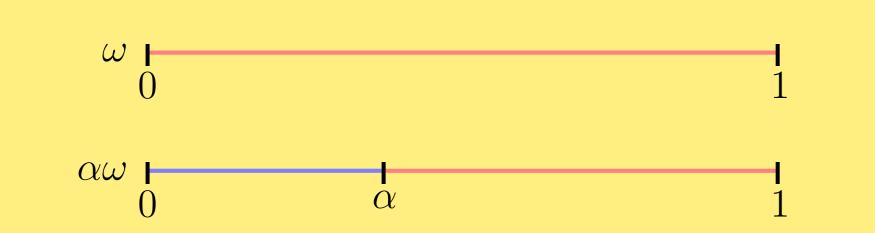
The discrepancy is the classical measure of deviation of a sequence from the ideal uniform distribution. U.d. sequences of points with low discrepancy are essential tools to get faster rates of convergence in quasi-Monte Carlo methods.

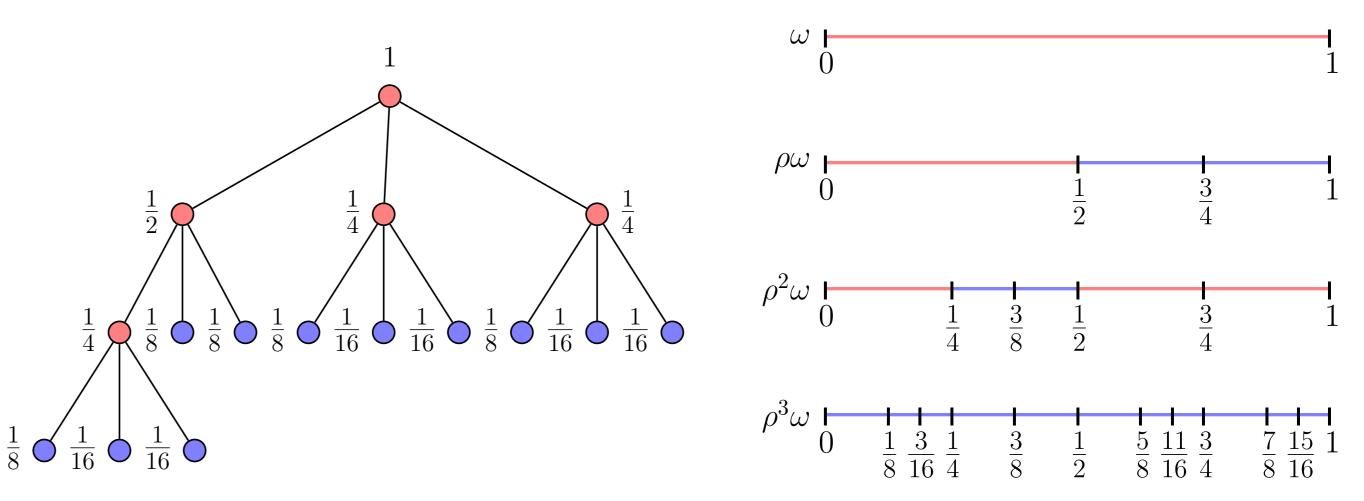
2. Kakutani's sequences

Kakutani's α -refinement

Let π be any partition of [0, 1] and $\alpha \in]0, 1[$. Kakutani's α -refinement of π (denoted by $\alpha\pi$) is obtained by splitting all the intervals of π having maximal length in two parts proportional to α and $\beta := 1 - \alpha$, respectively.

For $\omega := \{[0,1]\}\$ the sequence $(\alpha^n \omega)$ is called **Kakutani's sequence of partitions**, [4].





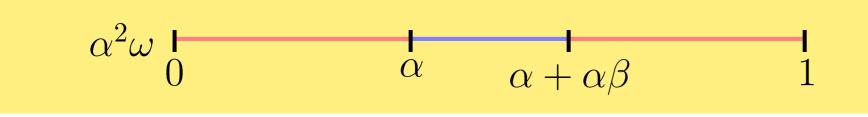
6. Results

Using a refinement of some results in [3] about Khodak's algorithm we get the following estimates.

Theorem. Discrepancy bounds in the rational case, (M. Drmota - M. I., 2012)

Suppose that the lengths of the intervals of a partition ρ of [0,1] are p_1, \ldots, p_m and that $\log\left(\frac{1}{p_j}\right)$ for $j = 1, \ldots, m$ are **rationally related** i.e. commensurable. Then there exist a real number $\eta > 0$ and an integer $d \ge 0$ such that the discrepancy D_n of $(\rho^n \omega)$ is bounded by

$$D_n = \begin{cases} \mathcal{O}\left(\frac{(\log k(n))^d}{k(n)^{\eta}}\right) & \text{if } 0 < \eta < 1, \\ \mathcal{O}\left(\frac{(\log k(n))^{d+1}}{k(n)}\right) & \text{if } \eta = 1, \\ \mathcal{O}\left(\frac{1}{k(n)}\right) & \text{if } \eta > 1. \end{cases}$$



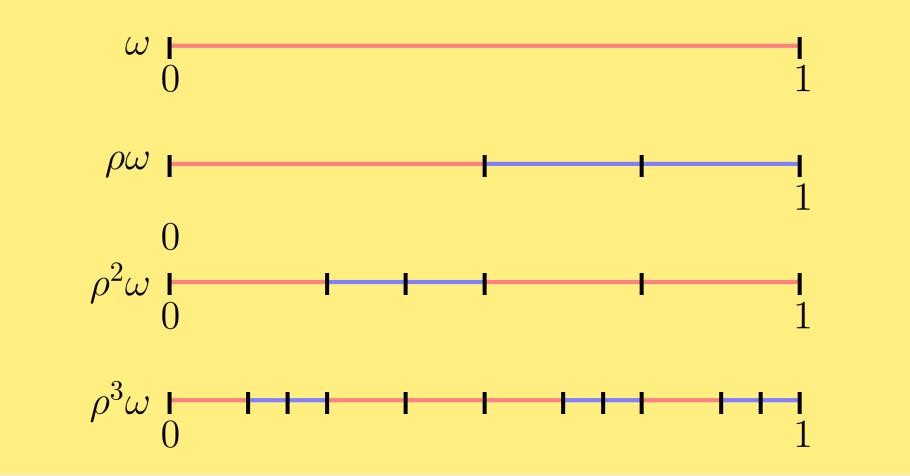
Theorem. (S. Kakutani, 1976)

For any $\alpha \in]0,1[$, Kakutani's sequence $(\alpha^n \omega)$ is u.d.

3. Generalized Kakutani's sequences

ρ -refinement

Let π be any partition of [0, 1] and let ρ be a non-trivial partition of [0, 1]. The ρ -refinement of π (denoted by $\rho\pi$) is obtained by splitting all the intervals of π having maximal length into a finite number of parts homothetically to ρ .



Moreover, there exist $\delta > 0$ and infinitely many n such that

$$D_n \geq \begin{cases} \delta \frac{(\log k(n))^d}{k(n)^{\eta}} \text{ if } 0 < \eta \leq 1\\ \delta \frac{1}{k(n)} \text{ if } \eta > 1. \end{cases}$$

Note that the parameters η and d are effectively computable and they only depend on p_1, \ldots, p_m .

Theorem. Discrepancy bounds in the irrational case, (M. Drmota - M. I., 2012)

Suppose that the lenghts of the intervals of a partition ρ of [0,1] are p and q = 1 - p. If $\frac{\log p}{\log q} \notin \mathbb{Q}$ is badly approximable, then the discrepancy D_n of $(\rho^n \omega)$ is bounded by

$$D_n = \mathcal{O}\left(\left(\frac{\log\log\left(k(n)\right)}{\log\left(k(n)\right)}\right)^{\frac{1}{4}}\right), \quad \text{as } n \to \infty.$$

Furthermore, if p, q are algebraic numbers then

$$D_n = \mathcal{O}\left(\left(\frac{\log\log\left(k(n)\right)}{\log\left(k(n)\right)}\right)^{\kappa}\right), \quad \text{as } n \to \infty,$$

where κ is an effectively computable positive real constant.

7. Conclusions

Our results provide optimal bounds for the discrepancy of a countable class of ρ -refinements (i.e. the rational case) including the ones in [1] and all the classical Kakutani sequences of parameter α such that $\frac{\log \alpha}{\log (1-\alpha)} \in \mathbb{Q}$. On the other hand there are still interesting **open problems**. • Our upper bounds in the irrational case are closely related to the Diophantine approximation

If $\rho = \{[0, \alpha[, [\alpha, 1]]\} \text{ with } 0 < \alpha < 1, \text{ then } \rho^n \omega = \alpha^n \omega.$

Theorem. (A. Volčič, 2011)

For any non-trivial partition ρ of [0,1], the sequence $(\rho^n\omega)$ is u.d..

4. Problem

In [2] we provide a quantitative analysis of the distribution behaviour of sequences generated by successive ρ -refinements of [0, 1]. Basically, our main focus is

To estimate the asymptotic behaviour of the discrepancy D_n of a sequence $(\rho^n \omega)$ as $n \to \infty$.

This problem has been first posed in [6] but so far the only known discrepancy bounds for generalized Kakutani's sequences have been obtained in [1] for ρ consisting of L intervals of length α and S intervals of length α^2 with $L\alpha + S\alpha^2 = 1$.

properties of the ratios $\frac{\log p_i}{\log p_j}$ and they are weaker than the estimates in the rational case. The main problem is to understand if this bad behaviour is due to the *method or to the nature of the irrational sequences*.

• We aim to find *explicit algorithms to provide low discrepancy sequences of points associated* to a low discrepancy sequence of partitions constructed by successive ρ -refinements.

References

[1] I. Carbone, *Discrepancy of LS-sequences of partitions and points*, Ann. Mat. Pura e Appl., 2011.

[2] M. Drmota and M. Infusino, *On the discrepancy of some generalized Kakutani's sequences of partitions*, Uniform Distribution Theory, 7 (no. 1): 75-104, 2012.

[3] M. Drmota, Y.A. Reznik, and W. Szpankowski, *Tunstall code, Khodak variations, and Random walks*, IEEE Trans. Inf. Th., 56: 2928-2937, 2010.

[4] S. Kakutani, *A problem of equidistribution on the unit interval* [0, 1], Measure theory (Proc. Conf. Oberwolfach, 1975): 369-375, Lecture Notes in Math. 541, Springer, 1976.

[5] G.L. Khodak, *Connection Between Redundancy and Average Delay for Fixed-Lenght Coding*, All-Union Conference on Problems of Theoretical Cybernetics (Novosibirsk, USSR,1969), 12. (in Russian).

[6] A.Volčič, *A generalization of Kakutani's splitting procedure*, Ann. Mat. Pura e Appl., 190 (no.1): 45-54, 2011.