ENERGY-MINIMAL DIFFEOMORPHISMS BETWEEN DOUBLY CONNECTED RIEMANN SURFACES

DAVID KALAJ

ABSTRACT. Let $N = (\Omega, \sigma)$ and $M = (\Omega^*, \rho)$ be doubly connected Riemann surfaces and assume that ρ is a smooth metric with bounded Gauss curvature \mathcal{K} and finite area. The paper establishes the existence of homeomorphisms between Ω and Ω^* that minimize the Dirichlet energy. Among all homeomorphisms $f \colon \Omega \xrightarrow{\text{onto}} \Omega^*$ between doubly connected domains such that $\operatorname{Mod} \Omega \leq \operatorname{Mod} \Omega^*$ there exists, unique up to conformal authomorphisms of Ω , an energy-minimal diffeomorphism which is a harmonic diffeomorphism. The results improve and extend some recent results of Iwaniec, Koh, Kovalev and Onninen (Inven. Math. (2011)) and can be considered as a variation of results of Iwaniec, Kovalev, Onninen (Proc. Roy. Soc. Edinburgh Sect. A (2011)) where the authors considered doubly connected domains in the complex plane w.r. to Euclidean metric.

UNIVERSITY OF MONTENEGRO, FACULTY OF NATURAL SCIENCES AND MATHEMATICS, CETINJSKI PUT B.B. 81000 PODGORICA, MONTENEGRO *E-mail address*: davidk@ac.me

²⁰⁰⁰ Mathematics Subject Classification. Primary 58E20; Secondary 30C62, 31A05. Key words and phrases. Dirichlet energy, Sobolev homeomorphism, deformation, minimal energy, harmonic mapping, conformal modulus.