

with all algebraic numbers, and e, π , log 2, etc.

Autogenerated sequences of numbers, functions and functionals

An algorithm of autogeneration

Define the genome of the generator, i.e. the first elements $(g_1, g_2, ..., g_8)$; e.g. for the «Primes» sequence: (NextPrime, 2). Then repeat the loop:

- **<u>Assemble</u>** the next compatible type pair (g_i, g_j) : the multifunction (or multi-valued map) g_i can be evaluated with g_i as argument
- **Evaluate** $g_i(g_i)$ which is a value or a set of values ; e.g. : NextPrime(2) = 3

Graph $\mathbf{g}_{i} \supseteq \{(\mathbf{g}_{i}, \mathbf{g}_{k})\}$ Output $\mathbf{g}_{i} = \mathbf{g}_{i}(\mathbf{g}_{i})$ Input **g**.

> «Assemble» may be symbolized by:

«Eval» stems from the question:

- **<u>Parameterize</u>** this set if it is infinite (or sometimes, reject it, if the rules are so) or
- Extract the values if the set is finite, using a predefined height rule (e.g. beginning with the object of the smallest norm and then of smallest argument)
- **Calculate norm, real and imaginary parts** if the extracted object is a complex number. This step may not exist.

<u>Generation of the ZeFiRoD sequence</u> (alias $Z\phi \varrho \partial$)

- \mathbb{Z} = Polynomial function Z in \mathbb{C} = Identity \Rightarrow g_1 < ? \subset
- = Fixed points of a function (or of a multivalued function) = $\{z, (z,z) \in \text{graph of the multifunction}\} \Rightarrow g_2$ $\phi' =$ Fixed points of a multifunctional $\Rightarrow g_2$
- Q = Reverse functional (transforms a graph {(z_s, z_t), $s, t \in ...$ } into {(z_t, z_s), $s, t \in ...$ }) =: g_4
- $\mathbf{\varrho}' = \text{Reverse map applied to a multifunctional} \Rightarrow g_5$ It exchanges inputs and outputs.
- ∂ = Multidifferentiation =: g_6 In the $Z \phi Q \Delta$ sequence, ∂ is replaced by Δ : $(\Delta f)(z) = f(z+1) - f(z)$

<u>Generation</u> of the $Z\phi Q\partial$ sequence GenSeqPL20120702-ZeFiRoD1:

We assemble g_2 with g_1 and evaluate: We do not assemble g_1 with g_1 , nor later, g_2 with g_2 , g_3 with g_1 , etc. because types are not compatible. $g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C: A = g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C: A = g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C: A = g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C: A = g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C: A = g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C: A = g_2(g_1) = \varphi(Z) = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C = Set of the fixed points of the identity function Z = C whose cardinal is not finite; So, here we generate the parameter whose possible values are in C = Set of the fixed points of the fixed$ $g_4(g_1) = \mathbf{q}(\mathbf{Z}) =$ Reverse function of Z = Z = Clone (It means: previously generated in the sequence). We go on, assembling only compatible type objects: This infinite set of functions is not parameterized (ZeFiRoD rule) $g_3(g_4) = \varphi'(\varrho) = \{\text{Fixed points of } \varrho\} = \{\text{Multifunctions that do not change when their graph is reversed}\}:$ $g_{5}(g_{A}) = \mathbf{q}'(\mathbf{q}) = \text{Reversed graph of } \mathbf{q} = \text{Graph of } \mathbf{q} = \mathbf{q} = \text{Clone.}$ The next clones will be ignored. $g_{6}(g_{1}) = \partial(Z) = dz/dz = derivative of the polynomial function Z =: 1 = g_{8} = Constant function whose image is {1}$ Flora and $g_3(g_6) = \varphi'(\partial) = An$ infinite set of exponential functions that we parameterize: $Ae^Z = g_0$ $\partial \subset P$ $\partial (Ae^Z) = Ae^Z$ Zephyr $g_{5}(g_{6}) = \mathbf{q}'(\partial) = \int_{A_{1}}^{Z} \cdot +A_{2} = g_{10}$ = Integration = Inverse of differentiation $g_2(g_8) = \phi(\underline{1}) = 1 = g_{11}$ $1 \subseteq ?$ William : The only fixed point of the constant function <u>1</u> is the number **1** $g_4(g_8) = \mathbf{q}(1) = \text{Graph } 1 \times \mathbf{C}$: This multifunction whose domain {1} has only one element, is not accepted (ZeFiRoD rule) $g_{\zeta}(g_{Q}) = \partial(\underline{1}) = d\underline{1}/dz = \underline{0} = g_{12}$ = The zero function (1875) **Numbers**($Z\phi_0\partial$) is a denumerable algebraically closed $g_{0}(g_{11}) = Ae^{Z} (with A = g_{11} = 1) = e^{Z} = g_{13}$ transcendental extension of the field $\overline{\mathbb{Q}}$ in \mathbb{C} $g_{10}(g_{11}) = \{ \int_{A_1}^{Z} \cdot +A_2 \text{ (with } A_1 = 1) = \int_{1}^{Z} \cdot +A = g_{14}, \quad \int_{1}^{Z} \cdot +A \text{ (with } A = 1) = \int_{1}^{Z} \cdot +1 = g_{15}, \quad \int_{A_1}^{Z} \cdot +A_2 \text{ (with } A_2 = 1) = \int_{A}^{Z} \cdot +1 = g_{16} \}$ $g_{2}(g_{12}) = \phi(\underline{0}) = 0 = g_{12}$ Zero, zefiro, zephyrus, zephyr, cypher, sifr, chiffre, ... **0** is the fixed point of the zero map $g_{\gamma}(g_{13}) = \phi(e^{Z}) =$ The infinite set of the fixed points of e^{Z} . We parameterize it with a positive integer N: a sequence with increasing norms: $\phi(e^{Z})_{N} = g_{18}$ $e^{Z} \subset ?$ $g_4(g_{13}) = \mathbf{q}(e^Z) = \text{Logarithms} \pm 2\pi \text{ i k.}$ Defining log such that $-\pi < \Im(\log(Z)) \le \pi$, we parameterize with increasing norms: $\log(Z) + 2\pi i((-1)^N(2N-1) + 1)/4 = g_{19}$ $g_{12}(g_{11}) = e^{Z} (\text{with } Z = g_{11} = 1) = e^{1} = e^{2} = g_{20}$ <u>Conjectures:</u> e (or later in ZqQ ∂ : $1/\pi$, $\sqrt{\pi}$, e^{π} , e^{π^2} , $e^{\sqrt{2}}$, ...) \notin Periods, and so, ZqQ ∂ numbers $\not\subset$ Periods Which numbers $g_{15}(g_1) = \int_1^Z \cdot +1 \text{ (with } \cdot = Z) = \int_1^Z t \, dt \, +1 \, = \, [t^2/2]_1^Z +1 \, = \, Z^2/2 + 1/2 \, = \, g_{21}$ $g_{3}(g_{15}) = \phi'(\int_{1}^{Z} \cdot +1) = e^{Z-1} = g_{22} \dots$ or functions $g_{10}(g_{17}) = \int_{A_1}^{Z} \cdot A_2 \text{ (with } A_1 = 0) = \int_{0}^{Z} \cdot A_1 = g_{24} \dots g_{14}(g_{17}) = \int_{1}^{Z} \cdot A \text{ (A=0)} = \int_{1}^{Z} \cdot B_2 \dots g_{16}(g_{17}) = \int_{A}^{Z} \cdot A \text{ (A=0)} = \int_{0}^{Z} \cdot A \text{ (A=0)} = \int_{0}^{Z}$ are in $Z\phi \varrho \partial$, $g_{10}(g_{11}) = \phi(e^Z)_N$ (with N=1) = $\phi(e^Z)_1 = 1.37 \cdots e^{1.33 \cdots i} = g_{20}$ = The fixed point of e^Z with the smallest norm (and argument > 0) and which are not? Norm $(g_{20}) = |\phi(e^Z)_1| = 1.37... = g_{20}$ $\Re(g_{20}) = 0.318... = g_{21}$ $\Im(g_{20}) = 1.33... = g_{22}$ $g_{19}(g_{11}) = \log(Z) + 2\pi i ((-1)^{N}(2N-1) + 1)/4 \text{ (with } N=1) = \log(Z) = g_{33} \dots$ $g_4(g_{21}) = \mathbf{Q}(Z^2/2 + 1/2) = \text{Roots}_T(T^2/2 + 1/2 - Z) = \pm (2Z-1)^{1/2} = g_{41} \dots$

 \rightarrow ?

←

How soon, in $Z\phi_Q\partial$, do unexplained properties between universal constants occur (in comparison with the expected probabilities)?

Bouguereau

 $g_{27}(g_{8}) = \int_{1}^{Z} \cdot (\text{with } \cdot = \underline{1}) = \int_{1}^{Z} 1 \, dt = [t]_{1}^{Z} = Z - 1 = g_{63} \dots$ $g_{28}(g_8) = \int_0^Z \cdot +1 \text{ (with } \cdot = \underline{1} \text{)} = \int_0^Z 1 \text{ dt } +1 = [t]_0^Z +1 = Z + 1 = g_{68} \dots$ <u>The first numbers are:</u> 1, 0, e, $1.37 \cdots e^{1.33 \cdots i}$, $1.37 \cdots$, $0.318 \cdots$, $1.33 \cdots$, $e^e = 15.15 \cdots$, 1/2, $(e^2 + 1)/2$, 1/e, \ldots , $2\pi i$, \ldots Many integer sequences can be extracted:

Integers, Numerators and Denominators of the rational numbers, Floor, Ceiling or Round of the norms, ...

Integer sequences can be produced from each positive number of $Z\phi \partial \partial$: <u>Any algebraic number is in ZeFiRoD:</u> $\overline{\mathbb{Q}} \subset Z\phi \partial$ Bits, Digits in any base, Terms of the continued fraction, Numerators and Denominators of the successive convergents, ... 0, Z-1 and Z+1 \in Z $\varphi \varrho \partial \Rightarrow \mathbb{Z} \subseteq Z \varphi \varrho \partial$ and more: $\mathbb{Q} \subseteq Z \varphi \varrho \partial$ because: If the numbers z_1 and $z_2 \in Z\phi\varrho\partial$, we have -1, $\log(Z)$ and $Ae^Z \in Z\phi\varrho\partial \Rightarrow z_1e^{\log(z_2)} = z_1z_2 \in Z\phi\varrho\partial$ and then $-\log(z_2)$ and $z_1e^{-\log(z_2)} = z_1/z_2 \in Z\phi\varrho\partial$. Let us show now that any rational polynomial function is in ZeFiRoD: $\int_{0}^{Z} \cdot A$ and $\underline{0} \in \mathbb{Z} \varphi \varrho \partial \Rightarrow \int_{0}^{Z} 0 \, dt + a_0 = a_0 \, \underline{1} \in \mathbb{Z} \varphi \varrho \partial$ for any rational number a_0 . Then, $\int_{0}^{Z} a_{0} \underline{1} dt + a_{1} = a_{0}Z + a_{1} \in Z\phi \varrho \partial$ for any a_{0} and $a_{1} \in \mathbb{Q}$. Then, $\int_{0}^{Z} (a_{0}t + a_{1}) dt + a_{2} = a_{0}Z^{2}/2 + a_{1}Z + a_{2} \in Z\phi \varrho \partial$ for any rational numbers a_{0} , a_{1} , a_{2} ; etc. So, any polynomial function with rational coefficients is generated sooner or later in ZeFiRoD, and when its reverse is evaluated at 0, the roots are extracted. π is generated too, because g_{10} evaluated at N = 2 produces $\log(Z) + 2\pi i$ which gives $2\pi i$ at Z = 1. Then, $2\pi i$ divided by the algebraic number 2i gives π . <u>//oeis.org/</u> The On-Line Encyclopedia of Integer SequencesTM <u>//www.experimentalmath.info/</u> Experimental Mathematics Website **References:**