July 2012 v.1.2pl Number theory

A natural sequence, ZeFiRoD with all algebraic numbers, and $e, \pi, \log 2$, etc.

Autogenerated sequences of numbers, functions and functionals

An algorithm of autogeneration

Define the genome of the generator, i.e. the first elements $\left(g_{1}, g_{2}, \ldots, g_{s}\right)$; e.g. for the «Primes» sequence: (NexPPrime, 2). Then repeat the loop:

Graph \mathbf{g}_{i}	$\supseteq\left\{\left(\mathbf{g}_{\mathbf{j}}, \mathbf{g}_{\mathrm{k}}\right)\right\}$
Input \mathbf{g}_{j}	$\rightarrow \quad$ Output $\left.\mathbf{g}_{\mathrm{k}}=\mathbf{g}_{\mathrm{i}} \mathbf{g}_{\mathrm{j}}\right)$

- Assemble the next compatible type pair $\left(\mathrm{g}_{\mathrm{i}}, \mathrm{g}_{\mathrm{j}}\right)$: the multifunction (or multi-valued map) g_{i} can be evaluated with g_{j} as argument
- Evaluate $\mathrm{g}_{\mathrm{i}}\left(\mathrm{g}_{\mathrm{j}}\right)$ which is a value or a set of values ; e.g. : NextPrime(2)=3 《Eval» stems from the question:
- Parameterize this set if it is infinite (or sometimes, reject it, if the rules are so) or
- Extract the values if the set is finite, using a predefined height rule (e.g. beginning with the object of the smallest norm and then of smallest argument)
- Calculate norm, real and imaginary parts if the extracted object is a complex number. This step may not exist.

Generation of the ZeFiRoD sequence (alias $Z \varphi \varrho \partial$)
Rules here: «Only 1 variable Z and 2 parameters A_{1} and A_{2} ", « Instantiation of parameters first, and only with numbers », etc.
First elements: Except the differentiation, they all come from the 3 possible remaining questions around arrows:
$\mathrm{Z}=$ Polynomial function Z in $\mathbb{C}=$ Identity $=: \mathrm{g}_{1} \longrightarrow \subset$
$\varphi=$ Fixed points of a function (or of a multivalued function) $=\{\mathrm{z},(\mathrm{z}, \mathrm{z}) \in$ graph of the multifunction $\}=: \mathrm{g}_{2} \quad G$?
$\varphi^{\prime}=$ Fixed points of a multifunctional $=: g_{3}$
$\varrho=$ Reverse functional (transforms a graph $\left\{\left(\mathrm{z}_{\mathrm{s}}, \mathrm{z}_{\mathrm{t}}\right)\right.$, $\left.\mathrm{s}, \mathrm{t} \in \ldots\right\}$ into $\left.\left\{\left(\mathrm{z}_{\mathrm{t}}, \mathrm{z}_{\mathrm{s}}\right), \mathrm{s}, \mathrm{t} \in \ldots\right\}\right)=: \mathrm{g}_{4}$
$\varrho^{\prime}=$ Reverse map applied to a multifunctional $=: g_{5}$ It exchanges inputs and outputs.
$\partial=$ Multidifferentiation $=: g_{6} \quad$ In the $Z \varphi \varrho \Delta$ sequence, ∂ is replaced by $\Delta:(\Delta f)(z)=f(z+1)-f(z)$
Generation of the $Z \varphi \varrho \partial$ sequence GenSeqPL20120702-ZeFiRoD1:
We do not assemble g_{1} with g_{1}, nor later, g_{2} with $\mathrm{g}_{2}, \mathrm{~g}_{3}$ with g_{1}, etc. because types are not compatible. $g_{2}\left(g_{1}\right)=\boldsymbol{\varphi}(\mathbf{Z})=$ Set of the fixed points of the identity function $Z=\mathbb{C}$ whose cardinal is not finite; So, he $\mathrm{g}_{4}\left(\mathrm{~g}_{1}\right)=\mathbf{\varrho}(\mathbf{Z})=$ Reverse function of $Z=Z=$ Clone (It means: previously generated in the sequence).

We assemble g_{2} with g_{1} and evaluate:
\qquad «Assemble» may be symbolized by:
 $\mathrm{g}_{3}\left(\mathrm{~g}_{4}\right)=\varphi^{\prime}(\varrho)=\{$ Fixed points of $\varrho\}=\{$ Multifunctions that do not change when their graph is reversed $\}$:

We go on, assembling only compatible type objects:
This infinite set of functions is not parameterized (ZeFiRoD rule) $\mathrm{g}_{5}\left(\mathrm{~g}_{4}\right)=\varrho^{\prime}(\varrho)=$ Reversed graph of $\varrho=$ Graph of $\varrho=\varrho=$ Clone. The next clones will be ignored.
$\mathrm{g}_{6}\left(\mathrm{~g}_{1}\right)=\boldsymbol{\partial}(\mathbf{Z})=\mathrm{dz} / \mathrm{dz}=$ derivative of the polynomial function $Z=: \underline{1}=\mathrm{g}_{8}=$ Constant function whose image is $\{1\}$
$\mathrm{g}_{3}\left(\mathrm{~g}_{6}\right)=\boldsymbol{\varphi}^{\prime}(\boldsymbol{\partial})=$ An infinite set of exponential functions that we parameterize: $\mathrm{Ae}^{\mathrm{Z}}=\mathrm{g}_{9} \quad \partial \mathrm{C}_{\boldsymbol{a}} \boldsymbol{?} \quad \partial\left(\mathrm{Ae}^{\mathrm{Z}}\right)=\mathrm{Ae}^{\mathrm{Z}}$ $\mathrm{g}_{5}\left(\mathrm{~g}_{6}\right)=\mathbf{\varrho}^{\prime}(\boldsymbol{\partial})=\int_{\mathrm{A}_{1}}{ }^{\mathrm{Z}} \cdot+\mathrm{A}_{2}=\mathrm{g}_{10}=$ Integration $=$ Inverse of differentiation
$\mathrm{g}_{2}\left(\mathrm{~g}_{8}\right)=\boldsymbol{\varphi}(\underline{1})=1=\mathrm{g}_{11} \quad 1 \subset$? :The only fixed point of the constant function $\underline{1}$ is the number 1
$\mathrm{g}_{4}\left(\mathrm{~g}_{8}\right)=\mathbf{\varrho}(1)=$ Graph $1 \times \mathbb{C}:$ This multifunction whose domain $\{1\}$ has only one element, is not accepted (ZeFiRoD rule)
$\mathrm{g}_{6}\left(\mathrm{~g}_{8}\right)=\boldsymbol{\partial}(\underline{1})=\mathrm{d} \underline{1} / \mathrm{dz}=\underline{0}=\mathrm{g}_{12}=$ The zero function
$g_{9}\left(g_{11}\right)=A e^{Z}\left(\right.$ with $\left.A=g_{11}=1\right)=e^{Z}=g_{13}$
$\mathrm{g}_{10}\left(\mathrm{~g}_{11}\right)=\left\{\int_{\mathrm{A}_{1}}{ }^{\mathrm{Z}} \cdot+\mathrm{A}_{2}\left(\right.\right.$ with $\left.\mathrm{A}_{1}=1\right)=\int_{1}^{\mathrm{Z}} \cdot+\mathrm{A}=\mathrm{g}_{14}$
$\mathrm{g}_{2}\left(\mathrm{~g}_{12}\right)=\boldsymbol{\varphi}(\underline{0})=0=\mathrm{g}_{17} \quad \underline{0} \subset$?

$$
\text { Numbers }(Z \varphi \varrho \partial) \text { is a denumerable algebraically closed }
$$ transcendental extension of the field $\overline{\mathbb{Q}}$ in \mathbb{C}

Flora and
Zephyr

William
Bouguereau
(1875)
$\int_{1}^{Z} \cdot+A($ with $A=1)=\int_{1}^{Z} \cdot+1=g_{15}, \quad \int_{A_{1}}{ }^{Z} \cdot+A_{2}\left(\right.$ with $\left.\left.A_{2}=1\right)=\int_{A}^{Z} \cdot+1=g_{16}\right\}$
$g_{2}\left(g_{13}\right)=\boldsymbol{\varphi}\left(e^{\mathrm{Z}}\right)=$ The infinite set of the fixed points of e^{Z}. We parameterize it with a positive integer N: a sequence with increasing norms: $\varphi\left(\mathrm{e}^{\mathrm{Z}}\right)_{\mathrm{N}}=\mathrm{g}_{18} \mathrm{e}^{\mathrm{Z}} G$? $\mathrm{g}_{4}\left(\mathrm{~g}_{13}\right)=\mathbf{\varrho}\left(\mathrm{e}^{\mathrm{Z}}\right)=$ Logarithms $\pm 2 \pi \mathrm{i} \mathrm{k}$. Defining \log such that $-\pi<\mathfrak{J}(\log (Z)) \leqslant \pi$, we parameterize with increasing norms: $\log (Z)+2 \pi \mathrm{i}\left((-1)^{\mathrm{N}}(2 \mathrm{~N}-1)+1\right) / 4=\mathrm{g}_{19}$ $g_{13}\left(g_{11}\right)=e^{Z}\left(\right.$ with $\left.Z=g_{11}=1\right)=e^{1}=e=g_{20} \quad$ Conjectures: $\mathrm{e}\left(\right.$ or later in $\left.Z \varphi \varrho \partial: 1 / \pi, \sqrt{ } \pi, e^{\pi}, \mathrm{e}^{\pi 2}, e^{\sqrt{2}}, \ldots\right) \notin$ Periods, and so, Z $\varphi \varrho \partial$ numbers $\not \subset$ Periods $\mathrm{g}_{15}\left(\mathrm{~g}_{1}\right)=\int_{1}^{\mathrm{Z}} \cdot+1($ with $\cdot=\mathrm{Z})=\int_{1}^{\mathrm{Z}} \mathrm{tdt}+1=\left[\mathrm{t}^{2} / 2\right]_{1}^{\mathrm{Z}}+1=\mathrm{Z}^{2} / 2+1 / 2=\mathrm{g}_{21}$
$\mathrm{g}_{3}\left(\mathrm{~g}_{15}\right)=\boldsymbol{\varphi}^{\prime}\left(\int_{1}^{\mathrm{Z}} \cdot+1\right)=\mathrm{e}^{\mathrm{Z}-1}=\mathrm{g}_{22}$ $\mathrm{g}_{14}\left(\mathrm{~g}_{17}\right)=\int_{1}^{\mathrm{Z}} \cdot+\mathrm{A}(\mathrm{A}=0)=\int_{1}^{\mathrm{Z}} \cdot=\mathrm{g}_{27} \quad \mathrm{~g}_{16}\left(\mathrm{~g}_{17}\right)=\int_{\mathrm{A}}^{\mathrm{Z}} \cdot+1(\mathrm{~A}=0)=\int_{0}^{\mathrm{Z}} \cdot+1=\mathrm{g}_{28}$
$g_{10}\left(g_{17}\right)_{1}=\int_{A_{1}}{ }^{z} \cdot+A_{2}\left(\right.$ with $\left.A_{1}=0\right)=\int_{0}^{Z} \cdot+A=g_{24} \cdots$
$g_{18}\left(g_{11}\right)=\boldsymbol{\varphi}\left(\mathrm{e}^{\mathrm{Z}}\right)_{\mathrm{N}}($ with $\mathrm{N}=1)=\varphi\left(\mathrm{e}^{\mathrm{Z}}\right)_{1}=1.37 \cdots \mathrm{e}^{1.33 \cdots \mathrm{i}}=$
$\mathrm{g}_{29}=$ The fixed point of e^{Z} with the smallest norm (and argument >0)
Which numbers or functions are in $Z \varphi \varrho \partial$, and which $\operatorname{Norm}\left(\mathrm{g}_{29}\right)=\left|\varphi\left(\mathrm{e}^{\mathrm{Z}}\right)_{1}\right|=1.37 \ldots=\mathrm{g}_{30}$
$\mathrm{g}_{19}\left(\mathrm{~g}_{11}\right)=\log (\mathrm{Z})+2 \pi \mathrm{i}\left((-1)^{\mathrm{N}}(2 \mathrm{~N}-1)+1\right) / 4($ with $\mathrm{N}=1)=$
$\mathfrak{R}\left(\mathrm{g}_{29}\right)=0.318 \cdots=\mathrm{g}_{31}$
$\mathfrak{J}\left(g_{29}\right)=1.33 \cdots=g_{32}$
$\mathrm{g}_{4}\left(\mathrm{~g}_{21}\right)=\mathbf{\rho}\left(\mathrm{Z}^{2} / 2+1 / 2\right)=\operatorname{Roots}_{\mathrm{T}}\left(\mathrm{T}^{2} / 2+1 / 2-\mathrm{Z}\right)= \pm(2 \mathrm{Z}-1)^{1 / 2}=\mathrm{g}_{41}$
$\mathrm{g}_{28}\left(\mathrm{~g}_{8}\right)=\int_{0}^{\mathrm{Z}} \cdot+1($ with $\cdot=\underline{1})=\int_{0}^{\mathrm{Z}} 1 \mathrm{dt}+1=[\mathrm{t}]_{0}^{\mathrm{Z}}+1=\mathrm{Z}+1=\mathrm{g}_{68}$
$\log (Z)=g_{33}$
$\mathrm{g}_{27}\left(\mathrm{~g}_{8}\right)=\int_{1}^{\mathrm{Z}} \cdot($ with $\cdot=\underline{1})=\int_{1}^{\mathrm{Z}} 1 \mathrm{dt}=[\mathrm{t}]_{1}^{\mathrm{Z}}=\mathrm{Z}-1=\mathrm{g}_{63}$
The first numbers are: $1,0, e, 1.37 \cdots e^{1.33 \cdots i}, 1.37 \cdots, 0.318 \cdots, 1.33 \cdots, e^{e}=15.15 \cdots, 1 / 2,\left(e^{2}+1\right) / 2,1 / e, \ldots, 2 \pi i, \ldots$
Many integer sequences can be extracted: Integers, Numerators and Denominators of the rational numbers, Floor, Ceiling or Round of the norms,

Any algebraic number is in ZeFiRoD: $\overline{\mathbb{Q}} \subset Z \varphi \varrho \partial$

$0, \mathrm{Z}-1$ and $\mathrm{Z}+1 \in \mathrm{Z} \varphi \varrho \partial \Rightarrow \mathbb{Z} \subset \mathrm{Z} \varphi \varrho \partial$ and more: $\mathbb{Q} \subset \mathrm{Z} \varphi \varrho \partial$ because: If the numbers z_{1} and $z_{2} \in Z \varphi \varrho \partial$, we have $-1, \log (Z)$ and $A e^{Z} \in Z \varphi \varrho \partial \Rightarrow z_{1} e^{\log \left(z_{2}\right)}=z_{1} Z_{2} \in Z \varphi \varrho \partial$ and then $-\log \left(z_{2}\right)$ and $z_{1} e^{-\log \left(z_{2}\right)}=z_{1} / z_{2} \in Z \varphi \varrho \partial$. Let us show now that any rational polynomial function is in ZeFiRoD: $\int_{0}^{Z} \cdot+A$ and $\underline{0} \in Z \varphi \varrho \partial \Rightarrow \int_{0}^{Z} 0 d t+a_{0}=a_{0} 1 \in Z \varphi \varrho \partial$ for any rational number a_{0}. Then, $\int_{0}^{z} a_{0} 1 d t+a_{1}=a_{0} Z+a_{1} \in Z \varphi \varrho \partial$ for any a_{0} and $a_{1} \in \mathbb{Q}$. Then, $\int_{0}^{Z}\left(a_{0} t+a_{1}\right) d t+a_{2}=a_{0} Z^{2} / 2+a_{1} Z+a_{2} \in Z \varphi \varrho \partial$ for any rational numbers a a_{0}, a_{1}; etc.

