On the Heyde characterization theorem for discrete Abelian groups

Margaryta Myronyuk myronyuk@ilt.kharkov.ua B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine, Kharkov, Ukraine

Abstract

In 1970 Heyde proved the following theorem.

Heyde theorem. Let ξ_j , j = 1, 2, ..., n, $n \ge 2$, be independent random variables. Let α_j , β_j be nonzero constants such that $\beta_i \alpha_i^{-1} \pm \beta_j \alpha_j^{-1} \neq 0$ for all $i \ne j$. If the conditional distribution of $L_2 = \beta_1 \xi_1 + \cdots + \beta_n \xi_n$ given $L_1 = \alpha_1 \xi_1 + \cdots + \alpha_n \xi_n$ is symmetric then all random variables ξ_j are Gaussian.

Formulate the following problem.

Problem 1. Let X be a locally compact second countable Abelian group, $\operatorname{Aut}(X)$ the set of topological automorphisms of X. Let ξ_j , $j = 1, 2, ..., n, n \ge 2$, be independent random variables with values in X and distributions μ_j . Consider the linear forms $L_1 = \alpha_1\xi_1 + \cdots + \alpha_n\xi_n$ and $L_2 = \beta_1\xi_1 + \cdots + \beta_n\xi_n$, where $\alpha_j, \beta_j \in \operatorname{Aut}(X)$ such that $\beta_i\alpha_i^{-1} \pm \beta_j\alpha_j^{-1} \in \operatorname{Aut}(X)$ for all $i \ne j$. Assume that the conditional distribution of the linear form L_2 given L_1 is symmetric. Describe possible distributions μ_j .

We solve Problem 1 in the class of countable discrete Abelian groups. AMS Classification: 60B15.

Γ