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We consider elliptic periodic differential (or even
pseudo-differential) operators

H = h(x ,D),

where x ∈ Rd , d ≥ 2, and h is either periodic, or
almost-periodic in x .



Most of the time I will assume that H is the Schrödinger
operator

H = −∆ + V

with smooth (almost-)periodic potential V = V (x), x ∈ Rd .

This
means either V (x + γ) = V (x) for all γ ∈ Γ, where Γ ⊂ Rd is a
lattice of full rank, say Γ = (2πZ)d (periodic case), or

V (x) =
∑
θ∈Θ

aθeiθx,

Θ being a finite set of frequencies (quasi-periodic case), or V is
a uniform limit of quasi-periodic functions (almost-periodic
case).
Another important example is the magnetic Schrödinger
operator

H = (i∇+ a)2 + V

with smooth scalar potential V = V (x) and smooth vector
potential a = a(x).
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Three types of questions one can ask about the spectrum:

(i) What does the spectrum look like a set?

(ii) What is the type of the spectrum? (absolutely continuous,
discrete, dense pure point, singular continuous, etc?)

(iii) ‘How much’ of a spectrum can we have, say in a large
interval [0, λ]?
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The standard way to ‘count’ the spectrum of H is to study the
integrated density of states which can be defined by the formula

N(λ) = N(λ; H) := lim
L→∞

N(λ; H(L)
D )

(2L)d .

Here, H(L)
D is the restriction of H to the cube [−L,L]d with the

Dirichlet boundary conditions, and N(λ; A) = #{λj(A) ≤ λ} is
the counting function of the discrete spectrum of A.



In the quasi-periodic or almost-periodic case, the answers to (i)
or (ii) are not known, not even partially (but there are many
results if d = 1).

If H is periodic, the spectrum is purely absolutely continuous
and has a band-gap structure; in particular, it has no
Cantor-like component.

If d = 1, then the number of gaps is almost always infinite.
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Proved:
d = 2: V.Popov, M.Skriganov (1981)

d = 3; arbitrary d with rational Γ: M.Skriganov (1985)
The lattice Γ is rational, if ∀γ1, γ2, γ3 ∈ Γ we have (γ1,γ2)

|γ3|2
∈ Q.

d = 4: B. Helffer, A. Mohamed (1998)
Also, papers by Yu.Karpeshina (d = 3, singular potential),
E.Trubowitz, J. Feldman, H. Knörrer, B. Dahlberg, O.Veliev.
For the magnetic Schrödinger operator H = (i∇+ a)2 + V the
Bethe-Sommerfeld conjecture was proved only for d = 2 (A.
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Important tool when working with periodic problems:
Floquet-Bloch(-Brillouin-Gelfand) decomposition.

H =

∫
⊕

H(k)dk ,

where H(k) = h(x , ξ + k) (H(k) := (i∇+ k)2 + V in the
Schrödinger case) acts in L2(Rd/Γ), k ∈ Rd/Γ′, and Γ′ is the
(analytical) dual to Γ (say Γ′ = Zd ). This means that

σ(H) = ∪k∈Rd/Γ′σ(H(k)).
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The spectrum of H(k) consists of eigenvalues:

σ(H(k)) = {λ1(k) ≤ λ2(k) ≤ . . . }.

Now we can define

`j := ∪k∈Rd/Γ′λj(k)

as the n-th spectral band, so that σ(H) = ∪j`j . Then for each λ
we can define two functions:

m(λ) = #{j : λ ∈ `j}

(the multiplicity of overlapping) and

ζ(λ) = ζ(λ; H) = max
j

max{t : [λ− t , λ+ t ] ⊂ `j}.

(the overlapping function)



Let us denote N(λ; H(k)) = #{λj(k) ≤ λ}
Then we can express the density of states as

N(λ) =
1

(2π)d

∫
Rd/Γ†

N(λ,H(k))dk.



Theorem. (A.Sobolev,LP, 2001)
Let d = 2,3,4. Then for sufficiently large λ we have:

Dimension m(λ)� ζ(λ)�

2 λ
1
4 λ

1
4

3 λ
1
2 1

4 λ
3
4 λ−

1
4

Unfortunately, the method does not work for d ≥ 5!
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The important part of the proof consists in the careful study of
the unperturbed operator H0 = ∆. Then N(λ; H0(k)) is the
number of integer points n ∈ Zd inside the ball of radius

√
λ

with centre at k.





The integrated density of states N(λ; H0) is the average value
of N(λ; H0(k)) averaged over all k ∈ Rd/Γ′; an easy calculation
shows that we have

N(λ; H0) = Cdλ
d/2,

where
Cd =

1
2dπd/2Γ(1 + d/2)

.

Denote

S1(λ) :=

∫
Rd/Γ′

|N(λ; H0(k))− N(λ; H0)|dk.



Theorem. (D.Kendall;M.Skriganov;A.Sobolev,LP)

For sufficiently large λ the following estimates hold:
(i) S1(λ)� λ

d−1
4 ;

(ii) For each positive ε we have: S1(λ)� λ
d−1−ε

4 ;
(iii) The estimate S1(λ)� λ

d−1
4 holds if and only if

d 6= 1(mod 4)
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If we want to prove the conjecture for all d and all lattices, we
need to study the eigenvalues of H(k). There are two types of
eigenvalues of these operators: stable (corresponding to
perturbations of simple eigenvalues, lying not too close to other
eigenvalues) and unstable (corresponding to perturbations of a
cluster of eigenvalues lying close together). It is relatively
straightforward to compute stable eigenvalues with high
precision. Unstable eigenvalues cause the main problem.

Luckily, there are not too many of them!
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Theorem. (LP, 2008)
Bethe-Sommerfeld conjecture holds for operators H = −∆ + V
with smooth periodic V for all dimensions d ≥ 2 and all lattices
of periods Γ.

Moreover, for large λ we have m(λ) ≥ 1 and ζ(λ) ≥ λ
1−d

2 .

Theorem. (G.Barbatis,LP, 2009)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m − 1.

Theorem. (A.Sobolev,LP, 2010)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m. In particular, this
conjecture holds for periodic magnetic Schrödinger operators.



Theorem. (LP, 2008)
Bethe-Sommerfeld conjecture holds for operators H = −∆ + V
with smooth periodic V for all dimensions d ≥ 2 and all lattices
of periods Γ.
Moreover, for large λ we have m(λ) ≥ 1 and ζ(λ) ≥ λ

1−d
2 .

Theorem. (G.Barbatis,LP, 2009)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m − 1.

Theorem. (A.Sobolev,LP, 2010)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m. In particular, this
conjecture holds for periodic magnetic Schrödinger operators.



Theorem. (LP, 2008)
Bethe-Sommerfeld conjecture holds for operators H = −∆ + V
with smooth periodic V for all dimensions d ≥ 2 and all lattices
of periods Γ.
Moreover, for large λ we have m(λ) ≥ 1 and ζ(λ) ≥ λ

1−d
2 .

Theorem. (G.Barbatis,LP, 2009)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m − 1.

Theorem. (A.Sobolev,LP, 2010)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m. In particular, this
conjecture holds for periodic magnetic Schrödinger operators.



Theorem. (LP, 2008)
Bethe-Sommerfeld conjecture holds for operators H = −∆ + V
with smooth periodic V for all dimensions d ≥ 2 and all lattices
of periods Γ.
Moreover, for large λ we have m(λ) ≥ 1 and ζ(λ) ≥ λ

1−d
2 .

Theorem. (G.Barbatis,LP, 2009)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m − 1.

Theorem. (A.Sobolev,LP, 2010)
Let d ≥ 2. Then the Bethe-Sommerfeld conjecture holds for
operators H = (−∆)m + q with periodic pseudo-differential
operators q of order smaller than 2m. In particular, this
conjecture holds for periodic magnetic Schrödinger operators.



Now let us move to the spectral questions of type (iii): the
asymptotic behaviour of the integrated density of states. Recall:
for positive λ we have

N(λ; H0) = Cdλ
d/2.



There is a long-standing conjecture that the density of states of
H enjoys the following asymptotic behaviour as λ→∞:

N(λ) ∼ λd/2
(

Cd +
∞∑

j=1

ejλ
−j
)
, (1)

meaning that for each K ∈ N one has

N(λ) = λd/2
(

Cd +
K∑

j=1

ejλ
−j
)

+ RK (λ) (2)

with RK (λ) = o(λ
d
2−K ).



The coefficients ej are real numbers which depend on the
potential b. They can be calculated using the heat kernel
invariants, computed by Polterovich, Hitrik-Polterovich,
and Korotyaev-Pushnitski; they are equal to a certain
integrals of the potential b and its derivatives. For
example,

e1 = − dwd

2(2π)d |Rd/Γ|

∫
Rd/Γ

b(x)dx

and
e2 =

d(d − 2)wd

8(2π)d |Rd/Γ|

∫
Rd/Γ

(b(x)2)dx.



Formula (1) was proved in the case d = 1 by Shenk-Shubin
(1987).

If d = 2, formula (2) was proved by A.Sobolev (2005) with
K = 2 (three terms) and R(λ) = O(λ−6/5).
Yu.Karpeshina (2000) has shown that formula (2) is valid with
K = 1 (two terms) and R(λ) = O(λ−

1
105 ) when d = 3 and

R(λ) = O(λ
d−3

2 lnλ) when d > 3.

Theorem. (R.Shterenberg,LP, 2008–2012)

Formula (1) holds in all dimensions.
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Almost-periodic problems
Now we want to study the density of states of quasi-periodic
operators. First, we need to impose additional condition: let

V (x) =
∑
θ∈Θ

aθeiθx,

and let Z (Θ) be the collection of all linear combination of
elements from Θ with integer coefficients. Let
θ1, . . . , θd ∈ Z (Θ). Then either {θj} are linearly independent, or∑d

j=1 njθj = 0, where nj ∈ Z and not all nj are zeros.



Theorem. (R.Shterenberg,LP, 2012)

Let H = −∆ + V, where V is quasi-periodic satisfying the
above condition. Then formula (1) holds.

Suppose now that V is almost-periodic, i.e. is a uniform limit of
quasi-periodic functions. Then formula (1) still holds, if we
impose additional diophantine-type conditions on V . These
conditions are too complicated to write them here!

Theorem. (S.Morozov,R.Shterenberg,LP, 2012)

Let H be a magnetic Schrödinger operator where both the
magnetic potential a and the electric potential V are
quasi-periodic functions satisfying the above condition. Then
formula (1) holds.
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What is the analogue of the formula

N(λ) =
1

(2π)d

∫
Rd/Γ†

N(λ,H(k))dk

for almost-periodic V? There are two definitions, and we need
them both!

Definition 1:
In all points of continuity of N, we have:

N(λ) = Mx(e(λ; x,x)),

where e(λ; x,y) is the integral kernel of the spectral projection
of H.
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Definition 2 (cheating)

N(λ) = T(Eλ(H̃)) = D(Eλ(H̃)L2(Rd )).

Here, T is the regularized (von Neumann) trace, and D is
the relative dimension.

In particular, N(λ; H) = N(λ; U−1HU), where U is a
unitary operator with almost-periodic coefficients.
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Another useful trick: often, we work with operators acting
not in L2(Rd ), but in B2(Rd ) (Besicovitch space). This is a
collection of all formal sums∑

j

ajeiθj x

with ∑
j

|aj |2 < +∞.

This is a non-separable Hilbert space. Results of Shubin
show that the norms and spectra of almost-periodic
operators acting in L2(Rd ) and B2(Rd ) are often the same.


