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Take the ring K := R{{x, t}}, (x, t) ∈ R2, of convergent germs of real-valued smooth functions from
C(∞)(R2;R) and construct the associated [1] differential polynomial ring K{u} := K[Θu] with respect to
a functional variable u, where Θ denotes the standard monoid of all operators generated by commuting
differentiations ∂/∂x := Dx and ∂/∂t. The ideal I{u} ⊂ K{u} is called differential if the condition
I{u} = ΘI{u} holds.

Consider now the additional differentiation

(1) Dt : K{u} → K{u},
depending on the functional variable u, which satisfies the Lie-algebraic commutator condition

(2) [Dx, Dt] = (Dxu)Dx,

for all (x, t) ∈ R2. As a simple consequence of (2) the following general (suitably normalized) representa-
tion of the differentiation (1)

(3) Dt = ∂/∂t+ u∂/∂x

in the differential ring K{u} holds. Impose now on the differentiation (1) a new algebraic constraint

(4) DN−1
t u = z̄, Dtz̄ = 0,

defining for all natural N ∈ N some smooth functional set (or ”manifold”) M(N) of functions u ∈
R{{x, t}}, and which allows to reduce naturally the initial ring K{u} to the basic ring K{u}|M(N)

⊆
R{{x, t}}. In this case the following natural problem of constructing the corresponding representation
of differentiation (1) arises: to find an equivalent linear representation of the reduced differentiation
Dt|M(N)

: Rp(N){{x, t}} → Rp(N){{x, t}} in the functional vector space Rp(N){{x, t}} for some specially

chosen integer dimension p(N) ∈ Z+.
We have shown that for arbitrary N ≥ 2 this problem is completely analytically solvable by means of

the differential-algebraic tools, devised in [2, 3], giving rise to the corresponding Lax type integrability of
the generalized Riemann type hydrodynamical system (4). Moreover, the same problem is also solvable
for the more complicated constraints

(5) DN−1
t u = z̄, Dtz̄

2
x = 0,

equivalent to a generalized Riemann type hydrodynamic flows, and

(6) Dtu−D3
xu = 0, DxDtu− u = 0,

equivalent to the Lax type integrable nonlinear Korteweg-de Vries and Ostrovsky-Vakhnenko dynamical
systems.
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