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Abstract. The sufficient conditions for a smooth nonlinear Lipschitzian mapping of Banach
spaces to be locally convex are formulated.

1. Introduction

Local convexity of nonlinear mappings of Banach spaces is important for many branches of
applied mathematics [13, 14], in particular, in the theory of nonlinear differential-operator equa-
tions, optimization and control theory etc. Some of interesting properties of such locally convex
mappings were studied by many theoretical [1, 2, 3, 4, 8] and applied [6, 7, 14] mathematicians.

Recall that a nonlinear continuous mappping f : X → Y of Banach spaces X and Y is
called to be locally convexive, if for any point a ∈ X there exists a ball Bε(a) ⊂ X of radius
ε > 0, such that its image f(Bε(a)) ⊂ Y is convex. Concerning the special case of a differentiable
mapping f : X → Y of Hilbert spaces, the property of local convexity holds if the Frechèt derivative
f ′(x) : X → Y is Lipschitzian in a closed ball Br(a) ⊂ X of radius r > 0 centered at point a ∈ X
and the linear mapping f ′(a) : X → Y is surjective. A proof of this statement is based on the
strong convexity of the ball Br(a) ⊂ X in the Hilbert space X. The local convexity problem for
a nonlinear differentiable mapping f : X → Y of Banach spaces needs more subtle techniques and
its analysis is done only for the case of reflexive Banach spaces.

2. The Hilbert space case

Since this is not a case for the nonlinear mappings mappings of Banach spaces, a problem
arises: to construct at least sufficient conditions for a nonlinear smooth mapping f : X → Y of a
Banach space X into a Banach space Y to be locally convex.

For convenience of entering into the problem, we will make a sketch of the local convexity proof
for a nonlinear smooth mapping f : X → Y of Hilbert spaces.

Proposition 2.1. Let f : X → Y be a nonlinear differentiable mapping of Hilbert spaces whose
Frechèt derivative f ′(x) : X → Y, x ∈ Br(a), in a ball Br(a) ⊂ X centered at point a ∈ X, is
Lipschitzian with a constant L > 0, the linear mapping f ′(a) : X → Y is surjective and the adjoint
mapping f ′(a)∗ : Y → X satisfies the condition ||f ′(a)∗|| ≥ ν for some positive ν > 0. Then for
any ε < min{r, ν/(2L) the image Fε(a) := f(Bε(a)) ⊂ Y is convex.

To prove Proposition 2.1 above, it is useful to state the following elementary enough lemmas,
based both on the Taylor expansion of the differentiable mapping f : X → Y at point x0 ∈ Bε(a) ⊂
Br(a) and on the triangle and parallelogram properties of the norm || · || in Hilbert spaces.

Lemma 2.2. Let a mapping f ′(x) : X → Y be L-Lipschitzian in a ball Bρ(x0) ⊂ Bε(a) of radius
ρ > 0, centered at point x0 := (x1 + x2)/2 ∈ Bε(a) for arbitrarily chosen points x1, x2 ∈ Bε(a).
Then there exists such a positive constant µ > 0 that the norm ||f ′(x)∗y|| ≥ µ||y|| in the ball
Bρ(x0) ⊂ X for all y ∈ Y, there holds the estimation ||f(x0) − y0|| ≤ ρµ for y0 := (y1 + y2)/2,
y1 := f(x1), y2 := f(x2) and the equation f(x) = y0 possesses a solution x̄ ∈ Bρ(x0) such that
||x̄− x0|| ≤ µ−1||f(x0)− y0||.
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Proof. Really, the following Taylor expansions at point x0 ∈ Bε(a) hold:

y1 = f(x1) = f(x0) + f ′(x0)(x1 − x0) + ϵ1,(2.1)

y2 = f(x2) = f(x0) + f ′(x0)(x2 − x0) + ϵ2,

where ||ϵj || ≤ L
2 ||xj − x0||2 = L

8 ||x1 − x2||2, j = 1, 2, as the mapping f ′(x) : X → Y is L-
Lipschitzian. From (2.1) one obtains easily that

(2.2) y0 = f(x0) + ϵ0,

where, evidently, ||ϵ0|| ≤ (||ϵ1|| + ||ϵ2||)/2 ≤ L
8 ||x1 − x2||2. Moreover, owing to the Lipschitzian

property of the Frechèt derivative f ′(x) : X → Y, one can obtain the following inequality:

||f ′(x)∗y|| = ||f ′(x)∗y − f ′(a)∗y + f ′(a)∗y|| ≥(2.3)

≥ ||f ′(a)∗y|| − ||f ′(x)∗y − f ′(a)∗y|| ≥
≥ ν||y|| − L||x− a||||y|| ≥ (ν − Lε)||y|| := µ||y||,

for µ = (ν−Lε) > 0, as the norm ||x−a|| ≤ ε. This, in particular, means that the adjoint mapping
f ′(x)∗ : Y → X is invertible, defined on the whole Hilbert space Y and the norm of its inverse
mapping (f ′(x)∗)−1 : X → Y is bounded in the ball Bε(a) by the value 1/µ.

The following inequality, based on (2.2) and the additionally assumed conditions ν > 2Lε and
ρ := L

8ε ||x1 − x2||2, holds:

||f(x0)− y0|| = ||ϵ0|| ≤
L

8
||x1 − x2||2 =

= Lρε ≤ ρ(ν − Lε)− ρ(ν − 2Lε) ≤
≤ ρ(ν − Lε) = ρµ.(2.4)

Denote now by x̄ ∈ Bε(a) a point satisfying the equation y0 = f(x̄), whose existence is owing to
the standard implicit function theorem [10, 11], and by ȳ := (f ′(x̃)∗)−1(x̄−x0) ∈ Y, where a point
x̃ := x0 + δ(x̄− x0) ∈ Bρ(x0) for some δ ∈ (0, 1), is defined by means of the Taylor expansion as

(2.5) f(x̄)− f(x0) = f ′(x̃)(x̄− x0),

where, evidently, ||x̃− x0|| ≤ δ||x̄− x0|| ≤ ||x̄− x0||. Then one can obtain that

||x̄− x0||2 = |(x− x0, f
′(x̃)∗ȳ)| = |(f ′(x̃)(x̄− x0), ȳ)| =

= |(f(x̄)− f(x0), ȳ)| = |(y0 − f(x0), (f
′(x̃)∗)−1(x̄− a)| ≤

≤ ||y0 − f(x0)|| ||(f ′(x̃)∗)−1|| ||x̄− x0|| ≤
≤ ||y0 − f(x0)|| ||x̄− x0||/µ,

yielding the searched for inequality

(2.6) ||x̄− x0|| ≤ ||y0 − f(x0)||/µ
and proving the Lemma.

Lemma 2.3. For arbitrarily chosen points x1, x2 ∈ Bε(a) the whole ball Bρ(x0) of radius ρ =
||x1 − x2||2/(8ε) ≤ ε, centered at point x0 := (x1 + x2)/2 ∈ Bε(a), belongs to the ball Bε(a).

�

Proof. Consider for this the following triangle inequality and the related parallelogram identity for
any point x ∈ Bρ(x0) :

||x− a|| = ||(x− x0) + (x0 − a)|| ≤ ||x− x0||+ ||x0 − a|| =(2.7)

= ||x− x0||+ ||(x1 − a)/2 + (x2 − a)/2|| =
= ||x− x0||+ [2(||x1 − a||2/4 + ||x2 − a||2/4)− ||x1 − x2||2/4]1/2 ≤
≤ ρ+ (ε2 − ||x1 − x2||2/4)1/2.

For the righthand side of (2.7) to be equal or less of ε > 0, it is enough to take such positive
ρ ≤ ε that

(2.8) ρ+ (ε2 − ||x1 − x2||2/4)1/2 ≤ ε.
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This means that the following inequality should be satisfied:

(2.9) ρ2 ≥ 2ερ− ||x1 − x2||2/4.

The preceding choice ρ = ||x1 − x2||2/(8ε) satisfies (2.9) in the evident form ρ2 ≥ 0, thereby
proving the Lemma. �

Proof. Now, based on Lemmas 2.2 and 2.3, it is easy to observe from (2.4) and (2.6) that a
point x̄ ∈ Br(a), satisfying the equation y0 = f(x̄), belongs to the ball Bρ(x0) :

(2.10) ||x̄− x0|| ≤ ||y0 − f(x0)||/µ ≤ ρµ/µ = ρ,

giving rise to the imbedding x̄ ∈ Bε(a). The latter proves the local convexity property of our
Proposition 2.1, that is the image Fε(a) := f(Bε(a)) ⊂ Y is convex. �

3. The Banach space case

Now we will proceed to studying the case of a nonlinear Frechèt differentiable Lipschitzian
mapping f : X → Y of Banach spaces. Before doing this let us formulate some important lemmas
holding in Banach spaces.

Lemma 3.1. (à la S. Mazur) Every convex, closed and bounded set in a reflexive Banach space
is weakly compact.

This theorem is charactersitic for reflexive Banach spaces and means, in particular, that a closed
ball Bε(a) ⊂ X is weakly compact.

Lemma 3.2. (Michael) Let X and Y be Banach spaces and A : X → Y be a surjective and

closed linear operator. Then there exists an invertible from the right multi-valued operator Ã−1 :
Y → X/ kerA and its continuous anti-symmetric selection S(A) : Y → X, such that the following
equality A · S(A)(y) = y holds for all y ∈ Y.

Proof. A proof is standard [5] and based on the classical Banach closed graph theorem [9] and a
direct successive iterative construction of an inverse selection S(A) : Y → X. �

Lemma 3.3. Let a nonlinear differentiable mapping f : X → Y, where X is a reflexive Banach
space, be such that the Frechèt derivative f ′(x) : X → Y on a sphere Bε(a) ⊂ X of radius ε > 0
is Lipschitzian with a constant L > 0, the linear mapping f ′(a) : X → Y is closed and surjective.
Suppose also that the inequality ε < k(S(f ′(a)))/(2L) holds, where

(3.1) k(S(f ′(a))) := sup
y∈Y

∥y∥−1
Y inf

x∈X
{∥x∥X : f ′(a)x = y} .

Then a nonlinear mapping

(3.2) Bε(a) ∋ x → S(f ′(a))[f(x)− f(a)] + a := αf (x) ∈ X

is a injective on the ball Bε(a), satisfying the estimation

(3.3) ||f(αf (x))− f(x)|| ≤ L||αf (x)− a||2/2

for all x ∈ Bε(a).

Proof. A proof easily holds from the Taylor expansion applied to the mapping f : X → Y at point
a ∈ X and from condition (3.2). �

Then, based on Lemmas 3.1 - 3.3, the following final proposition holds.

Proposition 3.4. For any 0 < ε < min{r, k(S(f ′(a)))/(2L)} the image

(3.4) Fε(a) = f(Bε(a)) := {f(x) ∈ Y : x ∈ Bε(a)}

of the ball Bε(a) ⊂ X is a convex set.

Proof. As the ball Bε(a) ⊂ X is weakly compact, the set F̃ε(a) := convFε(a) ⊂ Y is weakly

compact too. For the proposition to be proved it is enough to show that F̃ε(a) = Fε(a). �
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The local convexity condition 3.4 formulated above, to the regret, appears to be from application
point of view not enough effective, and needs additional more detailed analysis of the problem.
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[2] Górniewicz L. Topological fixed point theory of multivalued mappings. Kluwer, Dordrecht, 1999
[3] Goebel K. Zagadnienia metrycznej teorii punktów sta lych. Wydawnictwo Uniwersytetu Marii-Curie

Sk lodowskiej, Lublin, 1999

[4] Goebel K. Twierdzenia o punktach sta lych. Wyk lady. Wydawnictwo Uniwersytetu Marii-Curie Sk lodowskiej,
Lublin, 2005

[5] Michael E. Continuous Selections. I. The Annals of Mathematics, 2nd Ser., Vol. 63, No. 2. (Mar., 1956), pp.
361-382

[6] Linke Y.E. Application of Michael’s theorem and its converse to sublinear operators. Mathematical Notes, 52,
N1 (1992) p. 67-75 (in Russian)

[7] Polak B.T. Convexity of nonlinear image of a small ball with applications to optimization. Set-Valued Analysis,
9, (2001), p. 159-168

[8] Krasnoselsky M.A. and Zabreyko P.P. Geometric methods of nonolinear analysis. ”Nauka” Publisher, Moscow,
1975 (in Russian)

[9] Zeidler E. Applied functional analysis. Springer, NY, 1995

[10] Schwartz J.T. Nonlinear functional analysis. Gordon and Breach Science Publisher, NY, 1969
[11] Nirenberg L. Topics in Nonblinear Functional Analysis. AMS Publisher, 1974
[12] Prykarpatska N.K., Blackmore D.L., Prykarpatsky A.K. and Pytel-Kudela M. On the inf-type extremality solu-

tions to Hamilton-Jacobi equations, their regularity properties and some generalizations. Miskolc Mathematical

Notes, 4, N2 (2003), p. 157–180
[13] Prykarpatsky A.K. A Borsuk Ulam type generalization of the Leray Schauder fixed point theorem. Preprint

ICTP, IC/2007/028, Trieste, Italy, 2007
[14] Blackmore D., Prykarpatsky A.K. A solution set analysis of a nonlinear operator equation using a Leray

Schauder type fixed point approach. Topology, 48 (2009) 182-185

The Ivan Franko State Pedagogical University, Drohobych, Lviv region, Ukraine

The NJIT, 07102, NJ USA


